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Diffraction intensities of the 3D ptychographic iterative engine (3PIE) were written as a set of linear equations of the self-
correlations of Fourier components of all sample slices, and an effective computing method was developed to solve these
linear equations for the transmission functions of all sample slices analytically. With both theoretical analysis and numeri-
cal simulations, this study revealed the underlying physics and mathematics of 3PIE and demonstrated for the first time, to
our knowledge, that 3PIE can generate mathematically unique reconstruction even with noisy data.
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1. Introduction

Recently, computational imaging has become a research hotspot
in optical field, especially phase retrieval[1–4]. Coherent diffrac-
tion imaging (CDI)[5,6] is a kind of phase retrieval technique
using various iterative algorithms. The G–S algorithm[7,8] is the
earliest CDI algorithm that records diffraction intensity at two
separated planes. The error reduction (ER) algorithm[9] and
Fienup’s hybrid-input–output (HIO) algorithm[10], which
recorded only one frame of diffraction intensity, have much
faster convergence and much better reconstruction quality than
the G–S algorithm. Ptychography[11,12] was invented by Walter
Hoppe to reconstruct the objects with periodic structure and has
been successfully used in material inspection with X-ray and
high-energy electrons[13,14]. By combining the CDI algorithm
and ptychography technique together, Rodenburg proposed
the ptychography iterative engine (PIE)[15] to solve problems
of twin image and low convergence in the classical CDI. PIE
scans samples through a localized light beam to many positions
and reconstructs the complex transmission function of the sam-
ple from diffractive intensities recorded at all scanning positions.
The overlap between adjacent illuminating regions in PIE
greatly improves its convergence speed and reconstruction qual-
ity, and PIE has been realized with visible light[16], X-rays[17,18],
high-energy electron beams[19], and terahertz waves[20,21].While
the original PIE required exactly known illumination and sam-
ple positions, good reconstruction can be achieved by the

extended ptychography iterative engine (ePIE) algorithm[22]

to reconstruct sample and illumination wavefront simultane-
ously and by annealing or cross-correlation algorithms to
correct the scanning positions of the sample[23,24], greatly
improving the performance of PIE and extending its applica-
tions[25–27]. Applying the multislice theory of electron micros-
copy[28], 3D imaging can also be realized with PIE by
regarding a 3D object as a series of 2D infinitely thin layers.
Comparing to traditional 3D imaging methods such as optical
coherent tomography[29] and magnetic resonant tomogra-
phy[30], which generated intensity images, 3D ptychographic
iterative engine (3PIE)[31,32] can provide a high-quality 3D phase
image for a transparent volume object rapidly. While 3PIE was
first demonstrated experimentally with X-rays under geometric
projection approximation[33,34], it was also realized using visible
light with diffraction taken into consideration[32]. Single-shot
3PIE[35,36] was also realized by recording subdiffraction patterns
array with one detector exposure, making 3D phase imaging for
dynamic imaging possible[37]. 3PIE has shown good perfor-
mance in 3D phase imaging; however, there is still no analytical
theory to explain why it can work and to illustrate whether its
reconstruction has mathematic uniqueness. In experiments, we
were always not sure how reconstruction accuracy was affected
by the optical alignment used, hindering the further develop-
ment of 3PIE. Furthermore, since the analytical relationship
between recorded diffraction intensities and reconstructed
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images has not been found by now, we cannot do quantitative
and analytical error analysis on the reconstructed phase in
experiments, making it impossible for 3PIE to be applied in
fields of optical measurement and optical metrology, where
the mathematical uniqueness of reconstruction and analytical
error analysis are very critical[38].
To investigate the underlying physics and mathematics of

3PIE algorithm, in this study diffraction intensities were written
as a linear equation set of the self-correlations of Fourier com-
ponents of sample slices, and the spatial components of all sam-
ple slices can be analytically determined by solving this linear
equation set. Furthermore, an effective computing method that
requires only small computer memory and can solve this linear
equation set speedily was proposed. The influence of noise on
this proposed linear model and computing method was also
considered, demonstrating that both the linear model and a
speedy computing method have strong noise immunization
capability, and the influence of detector noise can be effectively
reduced by simply dividing all recorded intensities into groups
and adding each group together. In this paper, while theoretical
analysis was illustrated, numerical simulations were also carried
out to verify the feasibility of the proposed model and comput-
ing method. This study proves the mathematical uniqueness of
the 3PIE algorithm for the first time and puts forward a speedy
computing method to get analytical reconstruction from diffrac-
tion intensities, promoting the development of 3PIE in fields of
optical measurement or metrology, where a strict unique math-
ematic solution and quantitative error analysis are required.

2. Theory and Method

2.1 Theoretical analysis

The optical alignment of 3PIE is schematically shown in Fig. 1,
where the volume object is assumed to be composed of two
layers, and the laser beam P�x1,y1� incident on the first layer
is generated by a parallel beam passing through a tiny aperture.
The interval between two object layers was assumed as d1, and
their transmission functions were assumed as S1�x1,y1� and
S2�x2,y2�, respectively. The distance of a CCD to the second
object layer is z. The light field leaving the first object layer
U1�x1,y1� = P�x1,y1�S1�x1,y1� was regarded as the illumination
of the second object layer after it propagated the distance of d1.
The illumination arriving at the second object layer can be
written as

U2�x2,y2� = F−1fF �P�x1,y1�S1�x1,y1�� · H�u,v�g
= F−1fP̃�u,v� ⊗ S̃1�u,v� · H�u,v�g, (1)

where P̃�u,v� and S̃1�u,v� are Fourier transforms of
P�x1,y1� and S1�x1,y1�, respectively. H�u,v� = exp�ikd1 ·�����������������������������������
1 − �λu�2 − �λv�2

p
� is the transfer function, where λ means

wavelength and k is a wave vector. The symbol F and F−1

are Fourier transform and inverse Fourier transform, respec-
tively. ⊗ means a 2D convolution operator. The light field
arriving at the detector was the Fresnel diffraction of the trans-
mitted light of the second layerU2�x2,y2�S2�x2,y2�, and it can be
written as

U3�x,y� =
1
iλz

exp�ikz� exp
�
i
k
2z

�x2 � y2�
�

×
ZZ

∞

−∞
U2�x2,y2�S2�x2,y2� · exp

�
i
k
2z

�x22 � y22�
�

× exp

�
−i

2π
λz

�x2x� y2y�
�
dx2dy2: (2)

By defining S 0
2�x2,y2� = S2�x2,y2� exp�i k

2z �x22 � y22��, f x =
x
λz

and f y =
y
λz, Eq. (2) can be rewritten as

U3�λzf x,λzf y� =
1
iλz

exp�ikz� exp�iλzπ�f 2x � f 2y��
· �Ũ2�f x,f y� ⊗ S̃ 0

2�f x,f y��: (3)

The intensity of the �k,l�th pixel received by the detector can
be written into discrete form as

I�k,l�=
�X
u1,v1

�X
m1,n1

P̃�f m1
,f n1�S̃1�−f m1

� f m2
,− f n1 � f n2�

�

·H�f u1 ,f v1�S̃ 0
2�−f m2

� f k,− f n2 � f l�
�

·

�X
m2,n2

�X
m2,n2

P̃�f m2
,f n2�S̃1�−f m 0

1
� f m 0

2
,− f n 0

1
� f n 0

2
�
�

·H�f u2 ,f v2�S̃ 0
2�−f m 0

2
� f k,− f n 0

2
� f l�

��
, (4)

where f x1 =
x2
λd1

and f y1 =
y2
λd1
, S̃ 0

2�f x,f y� represents the Fourier

transform of S 0
2�x2,y2�, and � indicates conjugation. For simple

discussion, Eq. (4) can be rewritten into a compact form as
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X
m2 ,n2
m 0
2
,n 0
2

X
m1 ,n1
m 0
1
,n 0
1

S̃1�−f m1
� f m2

, − f n1 � f n2�

· S̃
�
1�−f m 0

1
� f m 0

2
, − f n 0

1
� f n 0

2
�

· S̃ 0
2�−f m2

� f k, − f n2 � f l�S̃ 0�
2 �−f m 0

2
� f k, − f n 0

2
� f l�

· H� f m2
,f n2�H

� � f m 0
2
,f n 0

2
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� � f m 0
1
,f n 0

1
�: (5)

Fig. 1. Schematic diagram of 3PIE with two slices object.
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In 3PIE, the illumination P̃�f m1
,f n1�P̃

� �f m 0
1
,f n 0

1
� and the

transmission function H�f m2
,f n2�H

� �f m 0
2
,f n 0

2
� are known,

defined as a coefficient matrix A =H�f m2
,f n2�H

� �f m 0
2
,f n 0

2
� ·

P̃�f m1
,f n1�P̃

� �f m 0
1
,f n 0

1
�. The unknowns are each layer of 3D object

xm1,n1,m2 ,n2
m0
1
,n 0
1
,m 0
2
,n0
2

=
P

m2,n2
m0
2
,n 0
2

P
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1
,n 0
1
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� f m2
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�S̃ 02�−f m2

� f k,− f n2 � f l�S̃ 0
�
2 �−f m 0

2
� f k,−n 0

2� f l�,
and the intensity matrix of detector is defined as
B = I�k,l�j�k=1, · · · ,K ; l=1, · · · ,L�. All linear equations of Eq. (5) can
be written in the matrix form: AX = B, and the solution of
Eq. (5) is written as

X = A−1 B: �6�
Assuming that the detector records the effective intensity

information ofM × N pixels, then there areM × N linear equa-
tions in Eq. (6). Undoubtedly, as long as the number of equa-
tions is greater than the number of unknowns, all the
xm1,n1,m2 ,n2
m 0
1
,n 0
1
,m 0
2
,n 0
2

can be calculated. The object information cannot be

obtained directly from these computed xm1 ,n1,m2,n2
m 0
1
,n 0
1
,m 0
2
,n 0
2

, which always

include all spectral components of each layer. Then, from all
xm1,n1,m2 ,n2
m 0
1
,n 0
1
,m 0
2
,n 0
2

we can choose specific pixel of m2 =m20, n2 = n20,

m 0
1 =m 0

10, n
0
1 = n 0

10, m
0
2 =m 0

20 and n 0
2 = n 0

20 and pick a new vec-
tor x 0

1 about m1, n1 as variables,

x 0
1 = S̃1�−f m1

� f m2
, − f n1 � f n2��S̃

�
1�−f m 0

1
� f m 0

2
, − f n 0

1
� f n 0

2
�

· S̃ 0
2�−f m2

� f k, − f n2 � f l�S̃ 0�
2 �−f m 0

2
� f k, − n 0

2 � f l��
= Cm20,n20,m

0
10

n 0
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,m 0
20

,n 0
20

S̃1�−f m1
, − f n1�jm1=1, : : : ,M

0
n1=1, : : : ,N

0
, (7)

where Cm20,n20,m
0
10

n 0
10

,m 0
20

,n 0
20

is a constant with value determined by

m20,n20,m 0
10,n

0
10,m

0
20,n

0
20. Physically, the light field multiplied

by a constant is essentially the same as the original light field.
Therefore, x 0

1 is equal to S̃1�−f m1
, − f n1�jm1=1, : : : ,M

0
n1=1, : : : ,N

0
and the first

layer S1�x1,y1� can be obtained by doing inverse Fourier trans-
form on x 0

1. Similarly, the second layer S2�x2,y2� can be obtained
by another vector as

x 0
2 = Cm 0

20
,n 0
20

,m 0
10

n 0
10

,m 0
20

,n 0
20

S̃2�−f m2
, − f n2�jm2=1, : : : ,M

0
n2=1, : : : ,N

0
: (8)

Since the number of unknown elements Xm1,n1,m2,n2
m 0
1
,n 0
1
,2m 0,n 0

2

is very huge

and is much larger than the pixel number of M × N of detector
in most cases, Eq. (6) cannot be solved with one frame of
recorded diffraction intensity. The condition for getting a
unique reconstruction is that the coefficient matrix A is of full
rank. When the sample is shifted by a distance mxδx and
nyδy along the x and y directions, respectively, the phase-shifting

factor ei��−f m1
�f m2

�mxδx��−f n1�f n2 �nyδy � as a known term should be
multiplied to A, and more linear equations are obtained. It is
easy to get A of full rank when the sample is shifted to positions
with random intervals. By scanning the sample to many

positions, we can get a huge linear equation group in Eq. (5),
and we can compute all xm1 ,n1,u1,v1

m2 ,n2,u2,v2
and corresponding S1�x1, y1�

and S2�x2, y2� analytically.
The above analysis is on a volume object composed of only

two layers, but similar analysis can also be carried out on volume
object composed of L layers, and the only difference lies in that
the above unknown element Xm1,n1,m2,n2

m 0
1
,n 0
1
,m 0

2
,n 0
2

will be replaced by

X
mM, · · · ,nN , · · · ,m2,n2m1,n1
m 0
M

, · · · ,n 0
N
, · · · ,m 0

2
,n 0
2
m 0
1
,n 0
1

S̃1�−f m1
�m2, − f n1 � n2�

· S̃
�
1�−f m 0

1
�m 0

2, − f n 0
1
� n 0

2�S̃ 0
2�−m2 �m, − n2 � l�

· S̃ 0�
2 �−m 0

2 � k, − n 0
2 � l� · · · :

Themathematical analysis is the same as that shown in Eq. (1) to
Eq. (8). If the volume object is sliced into L layers with size of
M 0 × N 0, there will be �M 0N 0�2 L unknowns xmM, · · · ,nN , · · · ,m2,n2m1,n1

m 0
M

, · · · ,n 0
N
, · · · ,m 0

2
,n 0
2
m 0
1
,n 0
1

to be solved. The largest number of uncorrelated linear equa-
tions available from one frame diffractive patterns isMN ; then,
to get �M 0N 0�2 L uncorrelated linear equations, the sample

should be scanned to at least �M
0N 0�2 L
MN positions. It is obvious that

with the increasing object layer number L, the required scanning
positions exponentially increase. For experiments, where the
number of scanning sample positions cannot be very huge
because positioning error always accelerates with scanning
range, a good reconstruction can be achieved with 3PIE when
the sample is always sliced into a very limited number of layers
or when the sample has a very limited number of spatial com-
ponents; that is, L or M 0N 0 always takes small values.

2.2. Efficient computing method

In the above mathematical analysis, to compute all �M 0N 0�2 L
unknown terms we need �M 0N 0�2 L uncorrelated linear equa-
tions; then the size of A is �M 0N 0�2 L × �M 0N 0�2 L, which is an
unreasonably huge number for most computer stations. Thus,
it is impossible to compute all unknown terms by directly using
Eq. (6).
We can find from the above analysis that only a very small

number of computed unknown terms were finally applied
to reconstruct the sample slices, and it is not essential to
compute all of them. Furthermore, many xmM, · · · ,nN , · · · ,m2,n2m1,n1

m 0
M

, · · · ,n 0
N
, · · · ,m 0

2
,n 0
2
m 0
1
,n 0
1

have zero values, and these terms need not be computed.
Figures 2(a) and 2(b) show the amplitude transmissions of
two sample layers, and Figs. 2(c) and 2(d) show the modulus
of their Fourier spectrum S̃1�f m1

,f n1� and S̃2�f m2
,f n2� in log scale,

Fig. 2. Amplitude transmissions and spectra of two layers.
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respectively. Figure 2(e) shows S̃1�−f m1
� f m2

,− f n1 � f n2�S̃
�
1�−f m 0

1
� f m 0

2
,− f n 0

1
� f n 0

2
�S̃ 02�−f m2

� f k,− f n2�S̃ 0
�
2 �−f m 0

2
� f k,− f n 0

2
�, where

we can clearly find that most of values are very close to zeros, except pixels around the center. Thus, it is possible to find an efficient
computing method without huge computer memory to calculate the sample’s transmission function.
To illustrate the generation of diffraction intensity with Eq. (5) intuitively, a 3 × 3 P̃�f m,f n�, a 3 × 3 S̃1�f m,f n�, and a 3 × 3 S̃2�f m,f n�

are used in Fig. 3 to show the computation of Ũ2�−2, −2�, Ũ2�−2, −1�, Ũ2�−1, −2�, and Ũ2�−1, −1� with Figs. 3(a)–3(d), respec-

tively, where orange grids S̃1�f m,f n� indicating the reversed spatial component matrix of the first layer were shifted by varying unities
in the x and y directions with respect to the green grids indicating the illumination spatial components P̃�f m,f n�. Ũ2�−2, −2�,
Ũ2�−2, −1�, Ũ2�−1, −2�, and Ũ2�−1, −1� can be written as Eq. (9),

8>>>>><
>>>>>:

Ũ2�−2, −2� = S̃1�−1, −1�P̃�−1, −1�H�−2, −2�
Ũ2�−2, −1� = �S̃1�−1,0�P̃�−1, −1� � S̃1�−1, −1�P̃�−1,0��H�−2, −1�
Ũ2�−1, −2� = �S̃1�0, −1�P̃�−1, −1� � S̃1�−1, −1�P̃�0, −1��H�−1, −2�

Ũ2�−1, −1� = �S̃1�0,0�P̃�−1, −1� � S̃1�0, −1�P̃�−1,0� � S̃1�−1,0�P̃�0, −1� � S̃1�−1, −1�P̃�0,0��H�−1, −1�

: (9)

Similarly, Figs. 4(a)–4(d) illustrate the formation of Ũ3�−3, −3�, Ũ3�−3, −2�, Ũ3�−2, −3�, and Ũ3�−2, −2�, respectively, where
S̃2�f m,f n� in light pink indicating the reversed spatial component matrix of the second layer was shifted by varying unities in the x and
y directions with respect to the blue grids indicating the illumination spatial components Ũ2�f m,f n�; they can be written as

8>>>>><
>>>>>:

Ũ3�−3, −3� = S̃2�−1, −1�Ũ2�−2, −2�
Ũ3�−3, −2� = S̃2�−1, −1�Ũ2�−2, −1� � S̃2�−1,0�Ũ2�−2, −2�
Ũ3�−2, −3� = S̃2�0, −1�Ũ2�−2, −2� � S̃2�−1, −1�Ũ2�−1, −2�

Ũ3�−2, −2� = S̃2�0,0�Ũ2�−2, −2� � S̃2�0, −1�Ũ2�−2, −1� � S̃2�−1,0�Ũ2�−1, −2� � S̃2�−1, −1�Ũ2�−1, −1�

, �10�

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

I�−3, −3� = jS̃2�−1, −1�Ũ2�−2, −2�j2

I�−3, −2� = jS̃2�−1, −1�Ũ2�−2, −1�j2 � jS̃2�−1,0�Ũ2�−2, −2�j2 � Ũ2�−2, −1�S̃2�−1, −1�Ũ�
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2�−2, −1�S̃2
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� �0, −1�

I�−2, −2� = jS̃2�0,0�Ũ2�−2, −2�j2 � jS̃2�0, −1�Ũ2�−2, −1�j2 � jS̃2�−1,0�Ũ2�−1, −2�j2 � jS̃2�−1, −1�Ũ2�−1, −1�j2

�S̃2�0,0�Ũ2�−2, −2�Ũ�
2�−2, −1�S̃2

� �0, −1� � S̃2�0,0�Ũ2�−2, −2�Ũ�
2�−1, −2�S̃2

� �−1,0�
�S̃2�0,0�Ũ2�−2, −2�Ũ�

2�−1, −1�S̃2
� �−1, −1� � S̃2�0, −1�Ũ2�−2, −1�Ũ�

2�−2, −2�S̃2
� �0,0�

�S̃2�0, −1�Ũ2�−2, −1�Ũ�
2�−1, −2�S̃2

� �−1,0� � S̃2�0, −1�Ũ2�−2, −1�Ũ�
2�−1, −1�S̃2

� �−1, −1�
�S̃2�−1,0�Ũ2�−1, −2�Ũ�

2�−2, −2�S̃2
� �0,0� � S̃2�−1,0�Ũ2�−1, −2�Ũ�

2�−2, −1�S̃2
� �0, −1�

�S̃2�−1,0�Ũ2�−1, −2�Ũ�
2�−1, −1�S̃2

� �−1, −1� � S̃2�−1, −1�Ũ2�−1, −1�Ũ�
2�−2, −2�S̃2

� �0,0�
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� �−1,0�

: �11�

When multiplied by a constant in spatial domain or spatial frequency domain, the sample’s transmission function does not change
essentially, and for simplicity we can assume S̃2�−1, −1� has a value of 1.0 or other given values without losing generality. Then

Ũ2�−2, −2� can be computed as Ũ2�−2, −2� =
����������������������
I3�−3, −3�

p
with the first equation of Eq. (12), and then S̃1�−1, −1� can be deter-

mined as S̃1�−1, −1� =
���������������
I3�−3,−3�

p
P̃�−1,−1�H�−2,−2� with the first equation of Eq. (9). According to Figs. 3(b) and 4(b), S̃2�−1,0� and S̃1�−1,0� can be

computed using the computed S̃2�−1, −1� and S̃1�−1, −1�. For clarity, we defined S̃1�−1,0� = x, S̃2�−1,0� = y, and the intensity
It�−3, −2� at the �−3, −2�th pixel when the sample was scanned to the tth position can be written as Eq. (12),

Vol. 22, No. 5 | May 2024 Chinese Optics Letters

050501-4



8>>>>><
>>>>>:

It�−3, −2� = jA1yj2 � jA2xj2 � jA3j2 � A1A
�
2yx

� � A1A
�
3y� A2A

�
1xy

� � A2A
�
3x� A3A

�
1y

� � A3A
�
2x

�

A1 = S̃1�−1, −1�eiΔt P̃�−1, −1�H�−2, −2�eiεt
A2 = S̃2�−1, −1�eiθt P̃�−1, −1�H�−2, −1�eiδt

A3 = S̃2�−1, −1�eiθt S̃1�−1, −1�eiΔt P̃�−1,0�H�−2, −1�

, (12)

where eiΔt , eiεt , eiθt and eiδt are additional phase factors of

S̃1�−1, −1�, S̃2�−1,0�, S̃2�−1, −1�, and S̃1�−1,0� caused by the
tth shifting of the sample, respectively. Since jA1yj2, jA2xj2,
jA3j2 do not change with the sample’s positions, these three
terms can be eliminated by subtracting I1�−3, −2� from
It1�−3, −2�jt1=2,3,4,5,6,7 to yield six linear equations. Then,
with these six linear equations, we can compute six unknowns:

fyx�
, y, xy

�
, x, y

�
, x

�g of the Eq. (12); then the values of S̃2�−1, 0�
and S̃1�−1, 0� are computed. With the same strategy, the values

of S̃1�0, 0� and S̃2�0, 0� can be computed in the next step, and all
other spatial components of two sample layers can be computed
in the same way. The transmission functions of the two sample
layers can be computed by doing inverse Fourier transform on
all computed S̃1�f m1

, f n1� and S̃2�f m2
, f n2�. To be suitable for

large matrix objects, the point-by-point calculation takes a cer-
tain amount of time. However, when calculating objects with
large layers, compared with the traditional 3PIE algorithm,
which needs to wait for convergence, this method can compute
each layer at the same time without extra time cost.
With the above computing method, two spatial components

of sample slices can be computed in each step using seven linear
equations, and the computer memory required was very small.
Then solving Eq. (7) becomes quite easier than directly using
Eq. (6). A two-layer sample was used as an example in the above
analysis, and the transmission function of the volume object
composed of many layers can also be computed in a similar

way.When the sample was composed of three layers, four layers,
and L layers, the number of diffraction patterns required will be
13, 21, and L2 � L� 1, respectively.

3. Numerical Simulations

To check the feasibility of the above theoretical analysis and pro-
posed computing method, a series of numerical simulations
were carried out. Two biological images of 512 × 512 pixels
shown in Figs. 5(a) and 5(b) were used as amplitude transmis-
sions of two layers of a volume sample. Two images shown in
Figs. 5(c) and 5(d) were used as phase retardations of two layers,
respectively. The interval between two layers was assumed as
1 mm. The probe light illuminating on the sample was a parallel
laser beam of 632.8 nm passing through an aperture 0.7 mm in
radius, and the distance of this aperture from the sample was
30 mm, equal to the distance from the sample to the detector.
The amplitude and phase of illumination are shown in Figs. 5(e)
and 5(f), respectively. The strength of the Fourier components
of two sample layers and the illumination are shown in
Figs. 5(g), 5(h) and 5(i) in log scale, respectively. When the sam-
ple was shifted by distances of (450 μm, 450 μm), (446 μm,
900 μm), (450 μm, 1320 μm), (890 μm, 450 μm), (905 μm,
920 μm), (900 m, 1361 μm), and (1330 μm, 450 μm), seven

Fig. 3. Formation of Ũ2�fm, f n� on varying pixels.

Fig. 4. Formation of Ũ3�fm, f n� on varying pixels.

Fig. 5. Object and illumination. (a) and (b) are the amplitude of two
layers of object; (c) and (d) are the corresponding phase of two
layers of object; (e) and (f) are the amplitude and phase of illumina-
tion; the spectra in log scale of two layers object and illumination
are shown in (g)–(i), respectively. The scale bar of (a) is suitable
for (b)–(d) and (g)–(i).
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frames of diffraction patterns shown in Fig. 6 can be obtained.
The pixel size of the detector was assumed to be 9 μm.
With the computing method discussed above, the strengths of

the Fourier components of two sample layers computed with
Eqs. (9)–(12) are shown in Figs. 7(a) and 7(b) in log scale,
respectively. For quantitative comparison, the differences
between the reconstructed images and the original images were
calculated based on the formula: error = jjOrej − jOoriginjj,
shown in Figs. 7(c) and 7(d). We can find that the difference
is around 0.05%, which is the computing accuracy of a common
desktop of 32 bits.
By doing inverse Fourier transform on computed Fourier

components in Fig. 7, we get the modulus and phase of two sam-
ple layers, shown in Figs. 8(a)–8(d). The differences of computed
modulus and phase to their original values are shown in
Figs. 8(e)–8(h), which are all at the scale of about 10−2, and
are the computing accuracy of a common workstation of 32 bits.
Results in Figs. 7 and 8 perfectly match our theoretical expect-
ations of Eqs. (10)–(12), proving the correctness of the above
theoretical analysis and suggested computing methods.
In the above studies, we did not touch experimental factors,

including detector noises, which are a kind of inevitable error
source of PIE experiments. If there is random noise ΔB in
the diffraction intensity, the linear equation set will become
AX = B� ΔB. Then, spatial components of sample slices can-
not be accurately computed by directly using noisy diffraction
intensities. If the sample was scanned at many positions to

record a large enough number of diffraction intensities, we
can add a large number of linear equations corresponding to
the same detector pixel together as

A1X � A2X� · · · �ANX

= B1 � B2� · · · �BN � ΔB1 � ΔB2� · · · �ΔBN : �13�

When N is large enough,
P

N
1 ΔBm will become close to zero,

and Eq. (13) will become
P

N
1 AmX =

P
N
1 Bm. Then, X, without

the influence of detector noise, can also be computed as
X = �PN

1 Am�−1
P

N
1 Bm. That means that, by shifting sample

to more positions and recording more diffraction patterns, we
can remarkably suppress the influence of detector noise and
get accurate reconstruction for 3PIE with the above illustrated
analytical method. As the approximation holds only when ΔB
takes a small value, this method cannot be available when exter-
nal noises are too large.
To verify the robustness of this anti-noise computing method,

another set of simulations was carried out by adding Poisson
noise to diffractive intensities, shown in Fig. 6. The sample
was shifted by 7 × 7 positions, yielding 49 frames of diffraction
patterns, and Poisson noise [Fig. 9(a)] with strength between−1
and 2 was added to each pattern, resulting in the 20 dB signal-to-
noise ratio (SNR). These noisy intensities are divided into seven
groups; after diffraction patterns in each group are summed up,
seven frames of new hybrid diffractive intensities, shown in
Figs. 9(b)–9(h), are obtained.
With our suggested computing method, the spatial compo-

nents of two sample layers were computed from hybrid diffrac-
tion patterns in Fig. (10), where Figs. 10(a) and 10(b) are the
modulus of computed spectral components of the two sample
layers in log scale. By doing inverse Fourier transform, theFig. 6. Seven diffraction patterns used in computation.

Fig. 7. Reconstructed spectra of two layers. (a) and (b) represent
the recovered spectra of two layers, and (c) and (d) depict the differ-
ence between reconstructed spectrum and original spectrum.

Fig. 8. Reconstruction of two layers object. (a)–(d) are the ampli-
tudes and phases of two layers object; (e)–(h) are the differences
of modulus and phases to their original values.

Fig. 9. Noise and seven new diffraction patterns. (a) is the Poisson
noise. (b)–(h) are seven new hybrid diffraction patterns.

Fig. 10. Results reconstructed from noisy data. (a) and (b) are the
recovered spectra in log scale; (c) and (d) are the modulus of
the reconstructed two-layer object; the corresponding phase is
shown in (e) and (f); amplitude differences to original image are
shown in (g) and (h).
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complex transmission function of the two sample layers can be
obtained. Figures 10(c) and 10(d) are the modulus of the two
layers, and Figs. 10(e) and 10(f) are corresponding phases.
Figures 10(g) and 10(h) show the differences between the recov-
ered modulus and their corresponding original values, respec-
tively. The maximum difference is about 0.5%, which matches
our expectation well that the influence of noise can be effectively
eliminated by shifting the sample to more positions and record-
ing more diffraction intensities.

4. Conclusions

The underlying physical mechanism and mathematics of the
3PIE imaging method was revealed by writing its diffraction
intensities as a linear equation set. The spatial components of
all sample slices can be analytically determined using an efficient
computing method to solve this linear equation set. The robust-
ness of this suggested computing method in dealing with noisy
data was also studied, and it was demonstrated that the influence
of detector noise can be effectively eliminated by simply dividing
many recorded intensities into groups and summing each group
up. While theoretical analysis was illustrated, numerical simula-
tions were also carried out to verify the feasibility of the pro-
posed model and computing method by taking a two-slice
thick sample as an example. This study clarified the mathemati-
cal uniqueness of the 3PIE algorithm for the first time and
suggested a speedy computing method to get analytical
reconstruction from diffraction intensity, breaking the theoreti-
cal bottleneck that hinders the application of 3PIE in fields of
optical measurement or metrology, where mathematical
uniqueness and error analysis are very crucial.
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