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In this work, we compare different methods for implementing a triplicator, a phase grating that generates three equi-
intense diffraction orders. The design with optimal efficiency features a continuous phase profile, which cannot be easily
reproduced, and is typically affected by quantization. We compare its performance with binary and sinusoidal phase pro-
files. We also analyze the effect of quantizing the phase levels. Finally, a random approach is adopted to eliminate the
additional harmonic orders. In all cases, a liquid-crystal-on-silicon spatial light modulator is employed to experimentally
verify and compare the different approaches.
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1. Introduction

Diffraction gratings of evenly distributed intensity among a
number of diffraction orders, also called fan-out elements, are
interesting for developing beam splitters and optical array illu-
minators. They were developed by the end of the 20th century,
when the emergence of micro-optics technology made their
fabrication possible[1]. One popular initial approach was the
Dammann grating[2], which has a binary phase profile where
the period is divided into different transition points[3]. Other
approaches based on multilevel[4] or continuous[5] phase pro-
files were developed later.
One particular case is the triplicator, a 1 × 3 fan-out diffrac-

tion grating that produces three equi-intense diffraction orders.
Gori et al.[6] derived the analytical solution for the phase-only
design with optimal diffraction efficiency that yields 92.6% of
the light intensity in the 0th and ±1st orders. However, this sol-
ution features a continuous phase profile, which is difficult to
properly reproduce, and is typically affected by quantization
effects, which becomemore relevant as the period of the gratings
gets reduced. Nevertheless, optimal phase triplicator gratings
have been demonstrated with spatial lightmodulators (SLMs)[7],
with geometric-phase metasurfaces[8], and with structured
liquid crystals[9]. The optimal triplicator design has recently
received renewed attention for applications in telecomunica-
tions[10] and for the physical implementation of trifocal diffrac-
tive intraocular lenses[11,12].

In this work, we investigate the optimum triplicator design
and the effect of quantizing the phase levels. Theoretical and
experimental results for different phase triplicator designs are
presented, where we use a liquid-crystal-on-silicon (LCOS)
SLM to experimentally verify their properties. We compare
the optimum design with the binary phase profile, a very simple
alternative that provides an efficiency of 86.4%, and with the
sinusoidal profile, which reaches 90.0% efficiency. In addition,
we present a randommultiplexing approach with much less effi-
ciency but free of unwanted higher-order harmonics that affect
the former designs. Let us remark that we consider in all cases
scalar triplicators, i.e., we do not consider vectorial diffraction
gratings[13,14], which can reach 100% efficiency but are polariza-
tion-sensitive.
The paper is organized as follows. After this introduction,

Section 2 describes the experimental setup. Section 3 reviews
the Fourier theory and describes the different grating designs
and their experimental implementation. Section 4 presents
the study in terms of the number of phase levels, and
Section 5 discusses the random approach. Conclusions are given
in Section 6.

2. Methods: Experimental System

The experimental setup is shown in Fig. 1. A He–Ne laser beam
of 632.8 nm wavelength is expanded through a spatial filter (SF)
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and collimated by a lens (L1). An attenuator (At) adjusts the
input intensity. Then, a system composed by a linear polarizer
P1 and a quarter-wave plate (QWP) with its neutral axis oriented
45° relative to P1 is used to generate circularly polarized light.
Therefore, the output intensity after linear polarizer P2 is con-
stant, regardless of its orientation. This way we can illuminate
the LCOS-SLM with an arbitrary polarization orientation while
keeping a constant intensity. A circular aperture allows for the
adjustment of the beam diameter. The LCOS-SLM employed
(Thorlabs Exulus) is a phase-only display with full HD resolu-
tion, comprising 1920 pixels × 1080 pixels of 6.4 μm size.
First, the phasemodulation of the display was calibrated using

a standard technique[15]. It shows a linear phasemodulation ver-
sus the addressed gray level and reaches a maximum 2π phase
depth. To display the phase diffraction gratings, the transmis-
sion axis of P2 is set parallel to the SLM LC director, so the input
light beam is fully modulated. Let us note that some works[14]

exploited the possibility of not aligning the input polarizer par-
allel to the LC director, such that the nonmodulated portion of
the input beam contributes to the zeroth order. This results in a
polarizing diffraction grating. Here, we consider pure scalar
phase-only gratings. The linear polarizer P3 is also set parallel
to the LCOS director. Finally, the light beam reflected from
the SLM is focused by a lens (L2) on a CCD camera (Basler
scA1390-17 fc, with 1390 × 1038 square pixels of 4.65 μm size),
where the diffraction pattern is captured.

3. Methods: Fourier Analysis of Phase Gratings

The paraxial Fourier optics domain is considered, where a scalar
phase-only diffraction grating with period p can be expanded as
a Fourier series[16],

g�x� = eiφ�x� =
X�∞

m=−∞
cmeim2πx=p, (1)

whose coefficients are given by

cm =
1
p

Z �p=2

−p=2
g�x�e−im2πx=pdx: (2)

Each term eim2πx=p in Eq. (1) represents a tilted plane wave that
generates a diffraction order with indexm. The intensity of each
order is given by Im = jcmj2. Some classical designs are the blazed
grating, a linear phase profile producing a modulo 2π single
e±i2πx=p term, which renders a single diffraction order with
100% efficiency, and the binary grating with π phase shift, which
generates equally intense ±1st orders and cancels the 0th order.
The triplicator diffraction grating is defined to provide three

equally intense diffraction orders I0 = I1 = I−1 with the maxi-
mum possible efficiency given by

η0±1 = I0 � I1 � I−1: (3)

3.1. Binary phase grating profile

Let us first regard the binary phase grating. This grating is inter-
esting not only because it is simpler to fabricate; it also serves to
calibrate the phase modulation in SLMs[17]. The Fourier coeffi-
cients [Eq. (2)] for this grating are given by

c0 =
1
2
�eiφ � 1�, (4a)

cm≠0 =
1
2
�eiφ − 1�sinc

�
m
2

�
, (4b)

where sinc�x� = sin�πx�=�πx�, and φ denotes the phase differ-
ence between the two levels in the grating. Thus, the intensity
of the 0th and ±1st orders is

I0 = jc0j2 =
1
2
�1� cos φ�, (5a)

I±1 = jc±1j2 =
2
π2

�1 − cos φ�: (5b)

Figure 2(a) shows the theoretical (lines) and experimental (dots)
normalized intensity of the 0th and ±1st orders of a binary phase
grating as a function φ. Figure 2(b) shows camera captures of
some diffraction patterns.When φ = π, the 0th order is canceled
and the ±1st orders reach I±1 = 40.5%. The rest of the energy is
diffracted to other higher orders,m = ±3, ±5 : : : . However, note
the two curves’ intersections in Fig. 2(a) at φ = 0.639π or
φ = 1.361π, where I0 = I±1 = 0.288, thus rendering a triplicator
with η0±1 = 86.4% efficiency.
The experiments in Fig. 2 confirm this result. We encode gra-

tings with a period of p = 64 pixels, to minimize the pixel cross
talk that degrades gratings with short periods[18]. The images in
Fig. 2(b) are deliberately saturated to make the higher orders
clearly visible.

Fig. 1. Experimental setup. At, variable attenuator; P1, P2, P3, linear polarizers;
L1, L2, convergent lenses; QWP, quarter-wave plate; SF, spatial filter; Ap,
circular aperture.
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3.2. Sinusoidal phase grating profile

Another classical phase-only grating often found in the litera-
ture is the sinusoidal phase profile given by

φ�x, a� = π � aπ · cos

�
2πx
p

�
: (6)

Here the phase varies sinusoidally with x, with an elongation
±aπ, around a central value that we chose, π, so that the phase
profile φ�x, a� is within the range �0, 2π� for values a ∈ �0, 1�.
For this profile, the Fourier coefficients are given by
In = jJn�aπ�j2[16], where Jn�x� are the Bessel functions,

Jn�x� =
1
2π

Z
π

−π
ei�x sin β−nβ�dx: (7)

Figure 3(a) shows the theoretical intensity of the zeroth, first,
and second diffraction orders as a function of parameter a, as
well as the measured normalized intensity.
For low parameter values, most of the light remains on the

zeroth order. When the curves for the zeroth and first orders
intersect, a triplicator grating is obtained, a situation that occurs
for a = 0.457, for which the total efficiency is η0±1 = 90.0%.
Figure 3(b) shows the experimental diffraction pattern for vari-
ous values of a. The result for a = 0.457 confirms the generation
of triplicator, with three equi-intense central orders. However,
most of the noncontributing light is concentrated on the
±2nd orders. As parameter a continues grow, light is diffracted
onto higher orders. The zeroth order vanishes for a = 0.765.
Note that the sinusoidal phase profile in Eq. (6) is continuous.

Since the SLM is a pixelated device, it can only display discrete

steps. However, since we encode the gratings with p = 64 pixels
per period, this quantization does not significantly affect the
results.

3.3. Gori’s optimum triplicator profile

In 1998 Gori et al.[6] derived the phase grating profile providing
a triplicator with optimal efficiency, whose solution was demon-
strated to be

φ�x, a� = π � arctan

�
a · cos

�
2πx
p

��
, (8)

where again we add π to have phase values in the range �0, 2π�.
This solution maximizes η0±1 [Eq. (3)] and provides intensities
at the zeroth and first diffraction orders given by

I0 =
4
π2

�K�−a2��2, (9a)

I±1 =
4

π2a2
�E�−a2� − K�−a2��2, (9b)

where K�m� and E�m� are the complete elliptic integrals of the
first and second kind, respectively. The optimum triplicator is
retrieved for a = 2.65.
Parameter a in Eq. (8) controls the phase profile and the rel-

ative intensity between the 0th and ±1st orders. Figure 4(a)
shows the phase profiles for three values of a. Note the profile
is sinusoidal for a = 1, but it tends to the binary profile for large
values of a. For very low values, the phasemodulation is reduced,

Fig. 2. Binary phase grating. (a) Normalized intensity of diffraction orders
versus phase level; (b) experimental diffraction patterns for different phase
values. Fig. 3. Sinusoidal phase grating. (a) Normalized intensity versus parameter a;

(b) experimental diffraction patterns.
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reaching a uniform phase in the limit a → 0 that renders only
the 0th order. The normalized intensity of the 0th and ±1st
orders, Eq. (9), is depicted in Fig. 4(b), together with the exper-
imental measurements. To our knowledge, these results are
the first experimental verification of Gori’s profile versus a.
Figure 4(c) shows some captures of the diffraction pattern.
Again, the gratings are displayed with 64 pixels per period; thus
the quantization effect is negligible. For a = 2.65, the expected
optimum triplicator is obtained. We measure an experimental
efficiency η0±1 = 94.7%, in agreement with the theoretical value
in Ref. [6].

4. Quantized Profiles

The continuous profile of Gori’s triplicator is ill-reproduced in a
pixelated SLM if the grating’s period p is not large enough.
Multilevel phase gratings were designed, for instance, in
Ref. [4], and a four-level phase triplicator was calculated in
Ref. [19]. In this section, we analyze phase diffraction gratings
with a discrete number of phase levels. But, having in mind their
implementation with a pixelated SLM, the phase levels must be
regarded equispaced, as shown in Fig. 5, where we consider N
different phase levels �φ0,φ1, : : : ,φN−1� located at positions
�x0, x1, : : : , xN−1� within one period �p�. The length of each

phase segment is Δ = p=N , which corresponds to a single pixel
in the SLM. This grating can be described as

g�x� =
XN−1

j=0

eiφj · rect

�
x − xj
Δ

�
, (10)

where each pixel is assigned a phase φj within a rectangle of
width Δ, j = 0, 1, : : : ,N − 1 and where the center of each pixel
is given by

xj =
p
2
·

�
2j� 1
N

− 1

�
: (11)

The rectangle function in Eq. (10) is defined as rect�x� = 1 if
jxj ≤ 1=2 and zero elsewhere.
The Fourier coefficients cm�N� in Eq. (2) are now

cm =
1
N

sinc

�
m
N

�XN−1

j=0

eiφj e−im2πxj=p, (12)

and the corresponding intensity of the diffraction orders is

Im =
sinc2

�
m
N

�
N2 ×

�
N �

XN−1

j≠k=0
2 cos

�
φj − φk −

2πm�j − k�
N

�	
:

(13)

By computing Eq. (13), for each value of N we seek for the
phases φj that provide a triplicator response. In all cases, we find
numerical solutions with a perfect intensity uniformity of the
three diffraction orders and select the one with the maximum
efficiency η0±1. Figure 6(a) shows η0±1 versus N , and Fig. 6(b)
plots the intensity of the second orders �η±2 = I2 � I−2� and
third orders �η±3 = I3 � I−3�. These curves reveal that, for low
odd values N = 3 and N = 5, the efficiency is lower than that
of the binary triplicator, η0±1 = 86.4%. For N = 3 the 3rd orders
vanish because the phase profile converges to a binary grating
with 1/3 fill factor[20]. For N = 4, the solution is equivalent
to the binary case but two pixels are assigned to each level.

Fig. 4. Gori’s optimum triplicator. (a) Phase profile for a = 1, a = 2.65, and
a = 8; (b) theoretical and experimental normalized intensity of the 0th and
±1st orders versus a; (c) experimental diffraction patterns for different values
of a.

Fig. 5. Quantized phase profile. Inset, for N = 20 versus Gori’s.
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Note that this is different from the four-phases solution pro-
posed in Ref. [19], which considers different lengths of the gra-
ting period for each phase level; thus it is not possible to
implement it with four equispaced pixels per period. Only when
the number of levels reaches N = 6 is the efficiency of the binary
triplicator surpassed, and then it slowly increases with N . We
simulate up to N = 20, for which η0±1 = 92%, very close to
that of Gori’s triplicator and whose quantized phase profile
approaches the continuous one (inset, Fig. 5). Figure 6(c) shows
some experimental captures of these quantized triplicators; they
all feature the three central equi-intense orders, but also a num-
ber of higher orders.

5. Random Approach

All the previous approaches have shown a good efficiency in the
generation of the three central orders, but the remaining inten-
sity is concentrated in unwanted higher harmonic orders.
Depending on the application, these orders are not desired
and are sometimes referred to as noise orders[21]. In this section,
we adopt a random multiplexing approach invented by Davis
and Cottrell[22] and further exploited to implement phase gra-
tings[23]. This approach consists in randomly addressing to each
pixel the phase of one of the different phase functions to be mul-
tiplexed. The large number of pixels nowadays available in
modern SLM devices makes this approach interesting[24].
Figure 7 shows the gray-level pattern addressed to the SLM

and the corresponding diffraction pattern. The three first rows
in Fig. 7 show, respectively, the result when a uniform phase, a

positive blazed grating, and a negative blazed grating are dis-
played on the SLM. In the three cases, a unique diffraction order
is generated. Therefore, an effective multiplexing of these three
phase functions renders the triplicator, without the production
of parasite higher orders, a property that has been recently
exploited in vortex fork gratings[25]. The experimental results
for the random approach are presented in the last capture of
Fig. 7(b). The corresponding gray-level function addressed to
the LCOS-SLM [last row in Fig. 7(a)] shows how the phase val-
ues are randomly selected among the values of the positive
blazed grating, of the negative blazed grating, or of the uniform
phase. If the random selection is made at each individual pixel,
the result is affected by the pixel cross talk caused by the fringing
effect in the SLM, which was demonstrated to generate addi-
tional zeroth order and higher harmonics when encoding high
spatial frequencies[26]. To minimize this effect, the randomness
is addressed to larger macropixels consisting of 4 × 4 individual
pixels. The triplicator is now successfully obtained with a com-
plete suppression of the additional harmonic orders. However,
the price to pay is a lower diffraction efficiency, which is approx-
imately one-third of that of the optimum triplicator[23]. Light
not contributing to the 0th order and ±1st orders appears as a
background speckle-type noise that limits the efficiency. In these
figures, the input intensity was increased by a factor of about 3 in
comparison with Figs. 3, 4, and 6.

6. Conclusions

In conclusion, our work has explored how to implement scalar
phase-only triplicators, fan-out elements generating three equi-
intense diffraction orders. We have compared different designs

Fig. 6. Calculated diffraction efficiency of the quantized triplicator as a func-
tion of N. (a) η0±1; (b) η±2 and η±3; (c) experimental diffraction patterns with
N = 2, 3, 5, and 20.

Fig. 7. (a) Illustration of the gray-level image addressed to the SLM and (b) the
corresponding experimental diffraction patterns for a uniform phase, a pos-
itive and a negative blazed gratings, and the random triplicator generated by
randomly addressing to 4 × 4 macropixels the phase of either the uniform
grating or that of the positive or the negative blazed grating.
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and used a phase-only LCOS-SLM to experimentally verify their
properties and analyze the difficulties in their implementation.
Gori’s optimum triplicator design[6] has the highest efficiency

(η0±1 = 92.6%). We experimentally verified the intensities of the
0th and 1st diffraction orders of this optimum design and com-
pared it to the binary and sinusoidal profiles. We found that the
binary grating (N = 2) is a feasible option, with an efficiency
η0±1 = 86.4%, and it is quite an isolated triplicator (it does not
exhibit ±2nd orders). We considered quantized phase profiles
and performed a numerical search of the phase-level values that
provide the triplicator with the highest efficiency for steps from
N = 2 to N = 20. Notably, the performance of the binary phase
grating is not surpassed until N = 6 phase levels are available.
Finally, we implemented a random approach that selectively
takes the phase values among two blazed gratings and a constant
phase. This approach is interesting because it eliminates the
unwanted diffraction orders, although at the cost of reducing
the diffraction efficiency. We believe the results of this study
are interesting for recent implementations of phase triplicators
in biological and telecommunications applications.
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