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Edge detection for low-contrast phase objects cannot be performed directly by the spatial difference of intensity distri-
bution. In this work, an all-optical diffractive neural network (DPENet) based on the differential interference contrast prin-
ciple to detect the edges of phase objects in an all-optical manner is proposed. Edge information is encoded into an
interference light field by dual Wollaston prisms without lenses and light-speed processed by the diffractive neural network
to obtain the scale-adjustable edges. Simulation results show that DPENet achieves F-scores of 0.9308 (MNIST) and 0.9352
(NIST) and enables real-time edge detection of biological cells, achieving an F-score of 0.7462.
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1. Introduction

Edge detection is one of the common data processing methods;
and can resolve core problems in the field of machine vision,
which has a wide range of applications in object detection[1],
image segmentation[2], data compression[3], microscopic imag-
ing[4], and object suggestion generation[5]. Edges can be
extracted by the spatial differentiator (SD) and reflect the key
information in the image more efficiently[6]. In the biomedical
field, intensity changes of phase objects such as biological tissues
and cells are usually weak[7]. To more clearly and directly reflect
the morphological boundary and structural characteristics of
phase objects, it is of great significance to develop edge detection
technologies for phase objects.
As a common method of phase imaging, differential interfer-

ence contrast (DIC) technology can produce a relief effect for
observing phase objects[8,9]. However, the beam splitter prism
can only be set in one direction to the image, and the relief effect
only enhances the one-dimension edge. The differential inter-
ferometric imaging spectrometer can also record the phase
information of the object, but the collected interference fringes

need to be unwrapped to the image[10]. To further detect the
edge of the imaged object, the SDs need to be processed by digital
or analog means.
Optical analog computing performs large-scale data process-

ing at the speed of light and becomes a powerful tool to replace
digital signal processing[11,12]. For intensity objects, optical SDs
based on surface plasmon polariton resonance[13], the Brewster
angle effect[14], and anisotropic crystal birefringence[15] were
only effective for one-dimensional edge detection. The transfer
function of nanophotonic material was regarded as a Laplacian
operator to realize two-dimensional SD[16]. However, due to the
cross talk of incident light with different polarization directions,
the edges with enough resolution were obtained only by working
at the terahertz frequency. As for pure phase objects, the phase-
contrast microscope based on Fourier optical spin splitting[17]

and quantitative phase gradient[18] can only image one-dimen-
sional edges and cannot avoid the anisotropy and artifact prob-
lems. In order to complete the isotropic two-dimensional edge
detection, it is necessary to design the metasurface of the sub-
wavelength structure and place it in the Fourier plane of a 4f sys-
tem[19,20]. The large 4f system is not conducive to structural
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design and limits the miniaturization of optical systems.
Diffractive deep neural network (D2NN) is an all-optical neural
network framework based on holographic technology and pro-
vides new ways to solve these problems[21–23].
Here, we propose a diffractive neural network (differential

interference contrast phase edging net, DPENet) based on the
differential interference contrast principle to detect the edge
of phase objects in an all-optical manner. In the simulation,
the phase object is divided into incident light and reference light
by dual Wollaston prisms (DWPs). Differential interference is
accomplished by polarized light in the same direction by the
polarizers. The diffractive neural network processes the original
differential signal to obtain the edge image of the corresponding
phase object. The scale of the edge can be changed by adjusting
the air gap of the DWPs during detection. MNIST and NIST
data sets were simulated to verify the performance of edge detec-
tion and generalization of the system. The F-score obtained on
MNIST and NIST data sets is 0.9308 and 0.9352, respectively,
and the highest imaging resolution can reach 420 nm. In addi-
tion, we also verified the application of DPENet in the field of
biological imaging, which can detect the edge of biological cells
and achieve the maximum F-score of 0.7462.

2. Principle

The structure of DPENet is shown in Fig. 1(a). DPENet is com-
posed mainly of two parts. One part is an SD for the input phase
object, and the other part is an all-optical D2NN processing
module. The schematic diagram of integrating D2NNwith a tra-
ditional DICmicroscope for edge detection is shown in Fig. 1(b).
In the DPENet, the DIC module is changed to SD for lensless
imaging to reduce the size of the system.

In the SD part, the phase object is illuminated by coherent
light. All polarizers are oriented at a 45° angle with respect to
the horizontal direction. The polarized light is split into ordinary
light and extraordinary light with perpendicular directions by
DWPs. The ray-tracing diagram of the beam splitter that incor-
porates DWPs is illustrated in Fig. 1(c). Due to the birefringence
property of theWollaston prism, the ordinary light and extraor-
dinary light are split into two parallel beams in the same direc-
tion as the incident light. The distance of splitting beams d can
be expressed as[24]

d =
l tan�γe1 − α� � s tan γe2
1 − tan α tan�γe1 − α� � l tan�α − γo1� � s tan γo2

1� tan α tan�α − γo1�
,

�1�

where α is the structural angle of the Wollaston prism, γoi and
γei, respectively, represent the refraction angles of ordinary light
and extraordinary light at the ith interface, l is the thickness of
theWollaston prism, and s is the thickness of the air gap between
the two prisms. These parameters except s are fixed parameters
of the system, and they cannot be adjusted after the system is
built. Therefore, to adjust the imaging scale of the edge in real
time while the system is working, the scale of the spatial differ-
ence can be changed by adjusting the distance of the splitting
beams. The resolution of the edge detection will be controllable.
In the limit state with no gap, the differential dimension of space
reaches the minimum. As the gap increases, the incident light
and the reference light become more separated, resulting in
thicker edges.
When the system is used as a one-dimensional (two-dimen-

sional) differentiator, spatial difference can be accomplished by
setting the DPWs in one (orthogonal) direction. Two orthogo-
nally polarized lights are normalized to the uniform direction by

Fig. 1. (a) Schematic diagram of DPENet. The DPENet consists of two parts: spatial differentiator and all-optical processor. POL, polarizer; DWPs, dual Wollaston
prisms; QWP, quarter-wave plate. (b) Edge detection system based on a DIC microscope. (c) Ray-tracing diagram of DWPs. α, structural angle of prisms; γ,
refraction angle. (d) Schematic diagram of forward- and backpropagation of a three-layer D2NN.
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the polarizer to produce interference, and the edge information
will be encoded into the interference light field. The superim-
posed light field received by the detector can be expressed as[25]

Uout = jAeiφ1 � Aeiφ2� · · · �AeiφN j2

= 2A2
XN
i=1

XN
j>i

cos �eiφi − eiφj� � A2N , (2)

where A is the amplitude of the input signals, φi is the phase of
the input signal, and N is the number of input light channels.
The edge information will be enhanced and the overlapping

part will be suppressed when the incident light and reference
light with a phase difference are spatially differentiated. The total
phase difference can be divided into the phase difference intro-
duced by the DWPs and the quarter-wave plate. The phase dif-
ference of the DWP can be expressed as[26]

θDWP =
2π
λ

��
ne − no �

no
cos�γe1 − α� −

ne
cos�α − γo1�

�
l

�
�

1
cos γe2

−
1

cos γo2

�
s

�
, (3)

where no and ne are the refractive indices of the birefringent
crystal for ordinary light and extraordinary light, respectively.
The D2NN is used as an all-optical signal processor to modu-

late the phase and amplitude of the original differential signal
and to obtain clear edges. The superimposed light field of the
two beams contains the edge information corresponding to
the separation distance, and the edge of the width equal to
the separation distance can be extracted by the D2NN all-optical
signal processor. A schematic diagram of forward- and backpro-
pagation of a three-layer D2NN is demonstrated by Fig. 1(d).
Each neuron is regarded as a new secondary wave source propa-
gating by diffraction between layers. Its spatial diffractive propa-
gation model is expressed by the Rayleigh–Sommerfeld
diffraction equation in the far field[27],

wi�x, y, z� =
z − zi
r2

�
1
2πr

� 1
jλ

�
exp

�
j2πr
λ

�
, (4)

where i represents the ith pixel of a given layer of the system
located at position �xi, yi, zi�, λ is the operative wavelength,

r =
�����������������������������������������������������������������
�x − xi�2 � �y − yi�2 � �z − zi�2

p
, and j =

������
−1

p
. The dif-

fractive propagation of signal in optical differentiator is also
defined by Eq. (4).
The ground truth of the edges for training and evaluation is

obtained by the DexiNed model[28]. The loss function is defined
to evaluate the cross entropy (CE) between the intensity distri-
bution of the outputs and the objects on the detection plane. The
“Adam” optimization algorithm, which is adapted according to
the optimization method based on stochastic gradient, is used to
minimize the loss function. The network has a learning rate of
0.01 with a decay of 0.1 for every two epochs and a batch size of
eight. It is implemented using Python version 3.7.11 and
TensorFlow framework 1.15 (Google Inc.) and runs on a

desktop computer (Nvidia Tesla T4 graphics processing unit,
Intel Xeon Gold 5218 CPU, 16 cores, 256 GB RAM on
Microsoft Windows 10).

3. Results and Discussion

The green laser with a wavelength of 532 nm is used as the input
light source of DPENet. The pixel size is set to 420 nm, and the
propagation distance between layers is 40λ. The output of the SD
is discretized by the D2NN processor to a resolution of 200 ×
200 to match the model.
Figure 2(a) compares the artificial neural network (ANN)

(intensity input) and DPENet (complex light field input) of
the same structure. The DPENet can directly process the com-
plex light field to get the edge without an additional detector.
However, the ANN with intensity input needs to detect the
intensity before working, and the convergence effect is obviously
worse than that of the complex light field input. In DPENet, the
interference light field of spatially differential signal obtained by
SD contains the edge information of the phase targets, and it
needs to be processed to get a clear edge image by D2NN.
Figures 2(b) and 2(c) show the processing flow of the interfer-
ence light field emanating from the SD in a five-layer phase-only
D2NN. It should be noted that D2NNdirectly processes complex
light fields, and the figures only show the intensity distribution
after each layer of processing.
To demonstrate the edge detection capability of DPENet, the

performance of the one-dimensional and two-dimensional
edges was tested by using MNIST[29] of 10 classes and NIST[30]

of 52 classes. The data set for the MNIST includes 60,000 data

Fig. 2. (a) Convergence plots of DPENet and ANN; (b) intensity of each layer of
D2NN processor. The complex light field is directly phase-only modulated by
D2NN, but only the intensity distribution of each layer is shown. (c) Phase
parameters of each layer of D2NN obtained by training.
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for training and another 10,000 for testing. The NIST data set
contains 124,800 training data and 20,800 testing data, including
26 handwritten English letters in capital and lowercase letters.
All results were simulated, and the same evaluation system in-
cluding precision-recall (PR) curves and F-scores was adopted.
In Fig. 3(a), the one-dimensional and two-dimensional edges

of the MNIST data set with perpendicular directions are dis-
played. The DPENet is highly sensitive to such tiny one-
dimensional edges. It is observed that the edge is also detected
in the tilt direction due to the resizing and discretization of
the object, which causes the sloping edge to appear as a ladder
shape in both horizontal and vertical directions. The F-score
of the horizontal and vertical edges can reach 0.8966 and
0.9293, respectively. Figures 3(b)–3(e) show the results of
two-dimensional edge detection of NIST byDPENet. The results
show that DPENet can also directly perform two-dimensional
edge detection of phase objects.
Moreover, DPENet can detect the two-dimensional edges

with different resolutions, including thicker strokes (upside)
and thinner strokes (downside). Figure 3(f) shows the PR curves
of DPENet preforming the edge detection onMNIST and NIST.
For MNIST and NIST edge imaging, the maximum F-score can
achieve 0.9308 and 0.9352, respectively.
It is worth noting that since DPENet is a data-driven all-

optical deep-learning paradigm, the large amount of training
data makes the DPENet highly generalized.

(1) The model trained on one data set can be directly applied
for testing on an entirely new data set.

(2) For the objects under the same category, different writing
habits will have different shape, stroke thickness, tilt
angle, etc. The model can carry out direct edge detection
after training.

(3) Model training only requires data at a single-edge scale,
and testing for various edge scales can be accomplished by
adjusting the air gap of the DWPs without additional
training.

An additional data set was introduced to assess the edge
detection performance of the network trained on the NIST data
set using the resolution test charts. The results are shown
in Fig. 4.
Figure 4(a) shows the simulation results of edge detection for

the resolution test charts. For the area indicated by the red box,
the edges under the splitting beams at the distance of 1, 2, 4, and
6 pixels are shown in Figs. 4(b)–4(e). To complete the edge
detection with an adjustable scale, the distance of splitting beams
can be changed by adjusting the air gap of the DWPs. This prop-
erty is particularly significant when the size of the observed
object is uncertain. A thick edge is not suitable for small objects,
since it fails to reflect details, whereas a thin edge is not condu-
cive to observing large objects due to the low contrast. Therefore,
the scale of edge detection can be freely adjusted according to the
target object. Notably, the scale of edges can be controlled by
directly adjusting the gap without retraining the DPENet.
Figure 4(f) shows the resolution with different scales of the same
position in Figs. 4(b)–4(e) representing the full width of half-
wave (approximately one to five pixels). Statistical analysis

Fig. 3. (a) Perpendicular directions of edges of the MNIST; (b) and (c) are the partial results of capital letters; (d) and (e) are the partial results of lowercase letters;
(f) PR curves of MNIST and NIST; the table shows the F-scores for the different testing data sets.
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shows that DPENet can achieve a highest resolution of about
420 nm (single pixel).
Table 1 shows the comparison of different methods. The pro-

posed method achieves 2D edge detection of phase objects with
higher resolution through a more compact optical system.

With regard to dimensionality, the proposed method enables
2D edge extraction. Concerning the optical system, our
approach avoids the need for a large 4f system; it only requires
an SD module and D2NN for lensless imaging, facilitating
instrument integration and miniaturization. In terms of resolu-
tion, we have achieved a finer edge imaging resolution of
0.42 μm compared with previous achievements.
To demonstrate the application of DPENet in edge detection

of biological tissue, pathological section images from the
National Cancer Institute GDC Data Portal[31] consisting of
4500 training images and 1000 testing images have been used
for simulation. Somemeasures were taken to extend the training
data set to ensure the training effect, such as different directions
of inversion and elastic deformation for data set[32].
Figure 5 shows the edges of pathological sections. Unlike the

DexiNed and the Canny operator[33], DPENet can detect the
edge of the phase object without staining cells and obtain results
comparable to other detection results. As expected, the edges

Fig. 4. (a) Results of edge detection for resolution test charts. Scale bars, 5 μm. (b)–(e) Edges under the splitting beams at a distance of 1, 2, 4, and 6 pixels,
respectively; (f) resolution of edge imaging with different scales.

Table 1. Comparison of Different Methods for Phase Objects.

Dimension Optical System Resolution

Ref. [17] 1D 4f ∼2 μm

Ref. [18] 1D Two-layer metasuface ∼5 μm

Ref. [19] 2D 4f + 1-layer metasuface 0.78 μm

Ref. [20] 2D 4f + 1-layer metasuface 3.11 μm

Ours 2D SD + no lens + D2NN 0.42 μm

Fig. 5. Results of edge extraction of pathological sections. (a) Environmental noise in the acquisition conditions; (b) the cell nucleus damage leads to detection
confusion.
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show the boundaries of the cell nucleus and reveal their shapes
and positions. DPENet exhibits robust performance in achieving
selective edge detection, even in the presence of substantial envi-
ronmental noise during acquisition. As shown in Fig. 5(a),
instances of ambient noise in the acquisition setting are correctly
disregarded by DPENet, preventing misidentification as nuclei
and enabling accurate edge detection. In Fig. 5(b), when the
sample nucleus is compromised, distinct edge detection out-
comes are generated by DexiNed and Canny operators, whereas
DPENet consistently maintains stable detection results without
succumbing to the impact. To quantitatively evaluate the results,
the maximum F-score of 0.7462 could be reached.

4. Conclusion

In conclusion, we proposed a scale-adjustable edge detection
system, DPENet, for phase objects in an all-optical manner
and simulated the optical SDs and the D2NN. DPENet can
detect the edge information of phase targets by interference dif-
ference and uses passive diffractive layers as an optical process-
ing device to ensure the high-speed operation and transmission
efficiency of edge detection. No lens or imaging system is used in
the whole system, which successfully reduces the complexity of
the device. Compared with the ANNs, our proposed system does
not need to collect the intensity distribution in advance, but
directly modulates the complex light field to enable real-time
online edge detection of phase objects.
At present, there have been many successful end-to-end cases

of phase object imaging through high-performance models in
the field of electrical neural networks[33–37]. The cascaded
D2NN is only completed by the integral transfer of phase-modu-
lated layers and diffraction between layers, and it is still a linear
system in nature[21]. Many researchers have proposed improved
models for a cascaded D2NNmodel, which is expected to greatly
improve the computing power of the model[38,39]. There are also
many studies on optical nonlinear activation proposed to
increase the nonlinear fitting ability of D2NN networks to fur-
ther improve computing power[40]. We believe that with the
strong advancement of the high-performance D2NN model
and nonlinear activation research, it is expected to form end-
to-end real-time edge detection for phase objects.
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