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In this work, we demonstrate the spectral manipulation in an ultrafast fiber laser system that generates ultrashort pulses
with a repetition rate of 1.2 GHz and two switchable modes—a 1064-nm fundamental laser mode with a maximum output
power of 66.6 W, and a 1125-nm Raman laser mode with a maximum output power of 17.23 W. The pulse width, beam quality,
and power stability are carefully characterized. We also investigate a method to switch between the two modes by manipu-
lating the duty cycle of the modulation signal. It is anticipated that this bi-mode ultrafast fiber laser system can be a
promising ultrafast laser source for frontier applications, such as micromachining, bioimaging, and spectroscopy.
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1. Introduction

High-power ultrafast fiber lasers have been used in many appli-
cations in a variety of fields, such as material processing, bioi-
maging, supercontinuum generation, and astronomical
spectroscopy[1–10]. Compared with solid-state ultrafast lasers
with free-space optics, ultrafast fiber lasers have advanced in cost
efficiency, robustness, and maintenance, and thus they are
highly desired for industrial applications, particularly in the field
of material micromachining[11,12]. Recent studies have shown
that the throughput and quality of the material micromachining
can be significantly increased using the novel concept of abla-
tion-cooling enabled by gigahertz (GHz)-repetition-rate ultra-
fast fiber laser at 1.0 μm[13]. In such a scenario, the successive
high-repetition-rate ultrashort pulses arrive before the targeted
spot cools down, such that they can efficiently ablate the hot
spot. Similar demand for GHz-repetition-rate ultrashort pulses
exists in the fields of biophotonics[14] and optical frequency
comb spectroscopy[15]. In terms of the spectral window, the
wavelength of 1.1 μm has drawn great interest, e.g., it was
reported that fluorescence microscopy using 1.1-μm lasers
had incomparable advantages in the fields of biomedical imag-
ing[16,17] and micromachining in transparent materials[18].

There exist mainly two approaches to generate ultrafast fiber
laser at 1.1 μm: supercontinuum generation using highly non-
linear fibers[19–23], or wavelength shifting inside or outside the
laser cavities through nonlinear effects such as stimulated
Raman scattering (SRS)[24–27]. The former approach manifests
low power spectral density, and only a limited portion of the
supercontinuum wavelength range is useful. Compared with
supercontinuum generation, especially those using free-space
configurations, the latter approach can enable high power effi-
ciency, particularly without loss of compactness, which, how-
ever, has rarely been studied for generating high-power GHz-
repetition-rate ultrashort pulses at 1.1 μm. To this end, here
we present a bi-mode high-power GHz-repetition-rate ultrafast
fiber laser source with a maximum output power of 66.6 W at
1.0 μm and 17.23 W at 1.1 μm. This fiber laser source can be
flexibly switched between two output modes by adjusting the
duty cycle of the modulation.

2. Experimental Setup

The schematic diagram of the bi-mode high-power ultrafast
fiber laser system is presented in Fig. 1, which mainly includes:
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1) a GHz seed and four stages of pre-amplifiers, 2) a Raman scat-
tering unit, and 3) a pulse compressor. The seed is passively
mode locked and generates ultrashort pulses at 1064 nm. The
seed oscillator cavity has a fiber length (∼7.5 cm), corresponding
to a fundamental repetition rate of 1.2 GHz, and it is pumped by
a single-mode laser diode (II-IV, 974 nm wavelength, 680 mW
maximum power). The seed oscillator cavity is housed in an
environment with low humidity, low vibration, and suitable
temperature to ensure long-term stability.
The seed has an average output power of ∼1.0mW, and it is

subsequently connected to the four stages of pre-amplifiers. The
first and second pre-amplifiers are configured with single-clad-
ding gain fiber (Coractive Yb 401), while the third and fourth
pre-amplifiers utilize double-cladding gain fiber (iXblue IXF-
2CF-Yb-PM-6-130-NH and Nufern PLMA-YDF-10/125,
respectively). After the first preamplifier, the average power of
the signal can be boosted to ∼60mW. A long single-mode fiber
(SMF, Corning HI1060, 200 m length) serving as a pulse
stretcher, is placed between the first and second pre-amplifiers,
which stretches the pulse width of the amplified GHz pulses to
∼25 ps. After the stretcher, the average power decreases to
∼20mW, which is then boosted to∼100mW by the second pre-
amplifier. An acousto-optic modulator (AOM) driven by an
arbitrary waveform generator (AWG), is placed after the second
preamplifier to modulate the GHz pulse train, i.e., changing the
continuous pulse train to bursts. In this study, the burst repeti-
tion rate is fixed at 1MHz. In order to compensate for the power
loss introduced by the AOM, the third preamplifier is applied,
after which the average power becomes ∼300mW. The fourth
preamplifier, which employs a double-cladding gain fiber and
is pumped by two multimode laser diodes (II–IV, 974 nm wave-
length, 9 W maximum power), is further used to amplify the
average power to ∼5W. Fiber-based isolators (ISOs) are used
at the end of the seed and each preamplifier to protect the laser
system from the backward reflected light, which mainly consists
of the amplified spontaneous emission (ASE).
In the Raman scattering unit, a main optical fiber amplifier is

used to further increase the average power and shift the center
wavelength to 1.1 μm (i.e., 1125 nm in this case), such that the
fiber laser can be switched between two modes, i.e., a 1064-nm
fundamental laser mode and a 1125-nm Raman laser mode,
respectively, by modulating the pulse train with different duty

cycles. In the main optical fiber amplifier, a polarization-main-
taining large-mode-area fiber (Nufern PLMA-YDF-15/130-
VIII, 15 μm core diameter) is used, and it is pumped by three
high-power laser diodes (BWT, 976 nmwavelength, 60Wmaxi-
mum power). After the Raman scattering unit, the signal power
of the fundamental laser at 1064 nm is amplified from 5 to
66.6 W, and it can generate an average power of 17.23 W for
the Raman laser at 1125 nm. To maintain the stable high-power
operation of the bi-mode fiber laser, the Raman scattering unit is
placed on a water-cooling platform. At the end, the GHz pulses
are compressed by a grating pair (GP, transmission version,
1600 lines/mm).

3. Result and Discussion

To quantify the basic performance of the bi-mode fiber laser, its
optical spectra at different conditions aremeasured with an opti-
cal spectrum analyzer (YOKOGAWA AQ6370B). A 2-GHz
InGaAs photodetector (EOT ET-3010) is used to convert the
optical signal of the laser pulses to an electrical signal, and then
the pulse train is recorded with a 2-GHz real-time oscilloscope
(LeCory 7200 A). The pulse width is measured with an autocor-
relator (APE pulseCheck USB 50). The basic performance of the
bi-mode fiber laser system is demonstrated in Figs. 2 and 3.
Figure 2(a) shows the optical spectrum of the seed, while
Fig. 2(b) shows the optical spectrum over a wider spectral span.
The wavelength of the seed laser is centered at 1064 nmwith a 3-
dB bandwidth of 2.37 nm, corresponding to a transform-limited
pulse width of ∼501 fs, assuming a sech2-pulse shape. As shown
in Fig. 2(c), the duration of each burst cycle is 1 μs, in accordance
with the burst repetition rate of 1 MHz. The inset of Fig. 2(c)
shows the pulse train over a time span of 10 ns in a burst
envelope. The pulse width at 66.6 W in 1064-nm mode before

Fig. 1. Schematic setup of the high-power bi-mode femtosecond fiber laser.
Amp, amplifier; AOM, acousto-optic modulator; RS, Raman scattering; M, mir-
ror; GP, grating pair.

Fig. 2. (a) Optical spectrum of the seed, measured at the output of the seed.
(b) The optical spectrum when laser power is 66.6 W, measured after the end
cap. The spectral resolution of both (a) and (b) is 0.02 nm. (c) The pulse train of
the laser source operating at the burst mode with a duty cycle of 90%. The
inset shows the intrapulses in the burst envelope.
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compressing is presented in Fig. 3(a), and the full width at half-
maximum is measured to be ∼25 ps. The autocorrelation func-
tion (ACF) of the ultrashort pulses after compression is shown in
Fig. 3(b). The full width at half-maximum of the compressed
pulses is measured to be 661 fs, assuming a sech2-pulse shape.
When modulating with a duty cycle of 90%, the nonlinear effect
is not significant at a relatively low peak power, and thus the
optical spectrum is centered at 1064 nm without obvious wave-
length shifting produced by the nonlinear effect, as shown in the
inset of Fig. 2(a).
The power stability at the maximum output power and the

slope efficiency curve of the bi-mode ultrafast fiber laser source
operating in the 1064-nm fundamental laser mode are shown in
Figs. 4(a) and 4(b), respectively, measured by a fan-cooled ther-
mal power meter (Ophir FL1100A-BB-65). The standard
deviation of the output power is quantified to be less than
0.29% over a time span of 8 h at the maximum output power
of 66.6W (before compressing). As shown in Fig. 4(b), the main
optical fiber amplifier can deliver an output power up to 66.6 W
at a pump power of 91.8 W, and the corresponding slope effi-
ciency is calculated to be 77.38%. The beam quality M2 mea-
sured with a CCD camera mounted on a linear translation
stage is shown in Fig. 4(c). The beam quality M2 of the output

laser beam is calculated to be 1.10 and 1.02 for the x and y direc-
tions, respectively.
By changing the duty cycle of the burst modulation to a lower

value, a stronger nonlinear effect can be obtained, resulting from
the relatively high peak power of the ultrashort pulses, such that
the optical wavelength of the fiber laser source can be efficiently
shifted to 1125 nm. It should be pointed out that the fiber laser
source also benefits from the modulation of the AOM and the
relatively small core diameter of the gain fiber in the Raman scat-
tering unit. Moreover, the operation mode of the fiber laser
source can be easily switched by adjusting the duty cycle of
the burst modulation. The spectral evolution of the ultrafast
fiber laser source with the pump power increasing or duty cycle
changing is shown in Figs. 5(a) and 5(b). From top to bottom,
the average output powers of the fiber laser source at the 1.1-μm
wavelength window are 0.018, 1.926, 11.56, and 17.23W, respec-
tively. In this measurement, the duty cycle of the burst modula-
tion is fixed at 10%. Before turning on the main optical fiber
amplifier, the wavelength component at 1125 nm is relatively
weak. By increasing the pump power of the main optical fiber
amplifier, the wavelength component at 1125 nm starts to grow
and broaden because of the enhanced SRS effect. When the out-
put power reaches its maximum, the 3-dB bandwidth at the
center wavelength of 1125 nm is about 9.91 nm, corresponding
to an ideal transform-limited pulse width of ∼132 fs. After spec-
tral filtering, the fundamental wavelength component (i.e., cen-
tered at 1064 nm) is more than 10 dB lower than that of the SRS-
shifted wavelength component (i.e., centered at 1125 nm). Please
note that a higher suppression ratio can be achieved by cascad-
ing more spectral filters or using a spectral filter with better opti-
cal density. Figure 5(b) shows the spectral evolution of the
ultrafast fiber laser source when duty cycles are 90%, 50%,
20%, and 10%, respectively. As can be observed, the optical spec-
trum does not exhibit notable change when the duty cycle is
within the range between 90% and 50%. SRS emerges only when
the duty cycle is tuned below 50%, and significant changes in the
optical spectrum can be observed only when the duty cycle is
tuned below 20%.
The performances of the 1125-nm wavelength component of

the bi-mode ultrafast fiber laser source are also measured and
demonstrated in Fig. 6. The relationship between the output
power of the 1125-nm wavelength component and the power
of the 1064-nm fundamental wavelength component is depicted
in Fig. 6(a). The slope efficiency is calculated to be 61.35%, and a
maximum output power of 17.23 W can be achieved for a
driving power of 40.82 W at the fundamental wavelength com-
ponent at 1064 nm, corresponding to an optical–optical conver-
sion efficiency of ∼42%. It should be pointed out that,
considering the potential damage of the optical items at
1125 nm, the optical power of the fundamental 1064-nm beam
is not increased to the maximum value (i.e., 66.6W). Figure 6(b)
depicts the beam quality M2 measurement, i.e., 1.33 and 1.17 for
x and y directions, respectively. The inset shows beam profile of
the 1125-nm wavelength component after spectral filter, which
exhibits an ellipticity of 0.957.

Fig. 4. Performance of the fundamental wavelength component (i.e., 1064 nm).
(a) Long-term power stability of the main optical fiber amplifier measured
at an output power of 66.6 W (before compressing). (b) Slope efficiency.
(c) Laser beam quality M2 measurement.

Fig. 3. (a) Pulse profile at the 1064-nm band before compression, measured at
an output power of 66.6 W. (b) ACF measured at an output power of 40.82 W
and a duty cycle of 90%.
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4. Conclusion

In this Letter, we have reported a bi-mode femtosecond fiber
laser source with a repetition rate of 1.2 GHz, which has a maxi-
mum output power of 66.6W at the 1064-nm fundamental laser
mode and amaximum power of 17.23W at the 1125-nm Raman
laser mode. The operation of the fiber laser source can be

manipulated by the burst modulation, and the 1125-nm
Raman laser can be efficiently generated by leveraging the
SRS effect. With promising performance, including good beam
quality and long-term power stability, this high-power and high-
repetition-rate femtosecond laser source in all-fiber configura-
tion is expected to be a good alternative to industrial
applications.
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