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A real-time wavefront sensing method for arbitrary targets is proposed, which provides an effective way for diversified
wavefront sensing application scenarios. By using a distorted grating, the positive and negative defocus images are simul-
taneously acquired on a single detector. A fine feature, which is independent of the target itself but corresponding to the
wavefront aberration, is defined. A lightweight and efficient network combined with an attention mechanism (AM-EffNet) is
proposed to establish an accurate mapping between the features and the incident wavefronts. Comparison results show
that the proposed method has superior performance compared to other methods and can achieve high-accuracy wavefront
sensing in varied target scenes only by using the point target dataset to train the network well.
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1. Introduction

Phase difference (PD) methods eliminate the uncertainty of
phase recovery through two (or multiple) images, which have
the advantages of having a simple structure. Such methods
are suitable for point and extended source imaging, and can re-
cover continuous and discontinuous phase distribution.
Therefore, the PD algorithm has been widely used in the fields
of image reconstruction[1,2] and image-based wavefront sens-
ing[3–6]. However, the PD algorithm based on numerical itera-
tion leads to heavy calculation and low efficiency, which is
limited in some scenarios where real-time wavefront sensing
is required. Moreover, such amethod is easily getting into a local
optimum and results in inaccurate results under a large-scale
phase aberration situation.
In recent years, deep learning has been introduced into the

field of image-based wavefront sensing[7–12], which can be used
to fit the nonlinear mapping relationship between the wavefront
phase and the intensity image. These methods avoid a time-con-
suming iterative process so that they provide an effective way to
restore a larger wavefront phase without local minimum prob-
lem after appropriate training. Current studies mainly focus on
either point target imaging scenes[7–9,11] or on specific extended
target imaging scenes (such as MNIST dataset)[10,12]. However,

once the imaging scene is switched, the neural network model
can hardly complete the wavefront sensing task effectively.
There are also some network models that improve the generali-
zation ability by increasing the diversity of training scenes[10,13].
However, these models lead to huge calculations, which are
time-consuming and difficult to apply to real-world situations.
When deep learning is used for extended target wavefront sens-
ing, it is impossible to restore the phase directly if both the im-
aging target and the wavefront phase are unknown. Therefore, it
is significant and meaningful to develop an image-based wave-
front sensing method that is independent of the imaging target.
Such a method can be applied to both a point source target and
any extended source target imaging, especially for special appli-
cation scenarios where the target on the image is dynamically
changing, e.g. remote imaging or laser beam transmission where
the distance between the target and the observer is changing.
Qi et al.[14] proposed a time-domain feature through math-

ematical operations to realize target-independent wavefront
sensing. Li et al.[15] also used sharpness information of the in-
focus and defocus images to get rid of the dependence of the
images. These methods provide a feasible way for studying
extended target wavefront sensing. However, in order to collect
the in-focus and defocus images, it is usually necessary to use a
beamsplitter and two cameras to work together at the same
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frequency or move one camera to collect the images twice. These
methods may lead to some limitations in application scenarios
with a high demand for dynamic wavefront sensing. Blanchard
et al. first proposed a diffractive element called distorted grating
and applied it to curvature wavefront sensing[16,17]. Distorted
grating is widely used in multi-plane imaging, fluid velocity
measurement, and particle tracking due to its strong real-time
performance and high efficiency. Compared with a beamsplitter,
the distorted grating ensures that the captured images are strictly
corresponding.
In this Letter, we propose a target-independent wavefront

sensing method based on distorted grating and deep learning.
The distorted grating is designed to acquire positive and nega-
tive defocus images on an imaging plane simultaneously. Then a
normalized fine feature is defined, which eliminates the infor-
mation of the target and keeps the wavefront information,
and we provide a lightweight and efficient network combined
with an attention mechanism (AM-EffNet) to invert the unique
wavefront aberration. In particular, targets in different scenarios
are considered, and the optimal defocus amount of distorted
grating is quantitatively analyzed. It is verified that our method
has irreplaceable advantages in accuracy and efficiency, which
provides potential for much more complicated wavefront sens-
ing tasks.

2. Design of Distorted Grating

When using the PD method for wavefront sensing, it is neces-
sary to ensure that more than two images are acquired synchro-
nously in the same exposure time. In this Letter, the distorted
grating is designed in detail to realize it. Such an optical element
is, in fact, an off-axis Fresnel zone plate[16].
In Ref. [16], the defocus amountW20 represents the defocus-

ing ability of the grating,W20 = R2

2f g
, and the off-axis amount x0 is

the distance from the pupil center to the center of the Fresnel
zone plate, x0 = λR2

2W20d0
, where R is the radius of the grating, f g

is the focal length of the grating, λ represents the incident wave-
length, and d0 represents the grating period at the center of the
aperture.
In this Letter, we further consider two key parameters, lateral

distance and splitting ratio. As shown in Fig. 1, when the
incident light is vertical to the distorted grating, the grating
equation is

mλ = d0 sin θm; (1)

the lateral distance Δy of the ±1st-order diffracted spots from
the 0th-order spot on the detection plane is determined by
the focal length of the lens f L and diffraction angle θm,

Δy = f L tan θm; (2)

combining Eqs. (1), (2), and the equation of x0, after determin-
ing λ, W20, R, f L, and Δy, the corresponding θm, d0, and x0 can
be calculated in turn. Note that if the Δy is too small, then there
will be image crosstalk, and if it is too large, then it will overflow
to the detector target surface. In the actual process, we need to
determine an appropriate lateral distance according to the size of
the selected camera target surface.
Another key parameter is the splitting ratio, which deter-

mines the diffraction efficiency of the three diffraction orders
of ±1 and 0. In order to make the light intensity distribution
of the three images as uniform as possible under the same expo-
sure intensity, the step width is set as a bisection, and the height
of the phase step is set as 0.639π[18].
In our work, the distorted grating is designed based on the

principles described above. The designed parameters are the
wavelength λ = 520 nm, the lens focal length f L = 200mm,
the defocus amount W20 = 1λ, the entrance pupil radius
R = 6mm, the lateral distance Δy = 3mm, and the off-axis
amount x0 = 0.519m.
The structure diagram of the proposed target-independent

wavefront sensing method is shown in Fig. 2. First, Zernike coef-
ficients conforming to the Kolmogorov turbulence distribution
are randomly simulated to generate the phase screen. Then tar-
gets with aberration are imaged by the distorted grating, and the
features irrelevant to the targets are extracted as the input of the
neural network. Finally Zernike coefficients for wavefront sens-
ing are output.

3. Feature Extraction of Arbitrary Target

The intensity distribution of the image captured by a camera can
be expressed as

i = o�psf , (3)

where � denotes the convolution operation, i is the image cap-
tured by the camera, o is the imaging target, and psf is the point
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Fig. 1. (a) Schematic of the distorted grating and (b) geometric relationship of
the ±1st diffraction order imaging positions.
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Fig. 2. Schematic of target-independent wavefront sensing.
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spread function of the optical system, which is proportional to
the Fourier transform of the expanded pupil function, ignoring
the scaling factors of the coordinates,

psf�x, y� = jF�p�x,y�ejϕ�x,y��j2, (4)

where ϕ�x, y� is the wavefront aberration through the aperture,
which can be represented by Zernike polynomials. By the
Fourier transform of Eq. (3), we can get

I = O · OTF, (5)

where I and O represent the frequency domain information of
the acquired image and the imaging target itself, respectively,
and OTF is the optical transfer function of the optical system.
The power matrix Mpower and sharpness matrix Msharpness can
be calculated from the spectrum of the positive and negative
defocus images:

Mpower =
Id−�u, v� · I�d−�u, v� − Id��u, v� · I�d��u, v�
Id−�u, v� · I�d−�u, v� � Id��u, v� · I�d��u, v�

=
F �psf d−� · F

� �psf d−� − F �psf d�� · F
� �psf d��

F �psf d−� · F
� �psf d−� � F �psf d�� · F

� �psf d��
, (6)

Msharpness =
Id−�u,v� · I�d��u,v�− I

�
d−�u,v� · Id��u,v�

Id−�u,v� · I�d−�u,v�� Id��u,v� · I�d��u,v�

=
F �psf d−� ·F

� �psf d��−F
� �psf d−� ·F �psf d��

F �psf d−� ·F
� �psf d−��F �psf d�� ·F

� �psf d��
, (7)

where I
�
d��u, v� and I

�
d−�u, v� are the complex conjugates of the

spectrum of the positive and negative defocused images.
Combining Mpower and Msharpness, the normalized fine feature
Mfine is defined as

Mfine =
������������������������������������������
jMpowerj · jMsharpnessj4

q
, (8)

where the multiplication operation is used to fuse sharpness fea-
tures and power features, and the fourth root operation is used to
enhance the blurred details. By substituting Eqs. (4), (6), and (7)
into Eq. (8), it can be proved that the target-related feature is

eliminated in Mfine where the aberration feature still remains.
Using fine features as the input, the neural network can be used
to invert the unique wavefront aberration. Figure 2 shows the
results of extracting normalized fine features from the positive
and negative defocus images by replacing different targets under
the same wavefront aberrations. The structure similarity index
measure (SSIM) results have proved that the proposed features
of the different imaging targets are the same (SSIM = 1), and
once the wavefront aberration changes, the feature also changes,
but they are still consistent, which means the proposed features
are independent of the target but related to the wavefront
aberration.

4. Proposed Neural Network

A lightweight and efficient network based on attention mecha-
nism (AM-EffNet) is proposed to obtain an efficient dynamic
wavefront restoration capability. As shown in Fig. 3(a), the pro-
posed network consists of three EffNet-blocks, three attention
mechanisms, and one full connection layer. Since the feature
map is a centrosymmetric figure, using half the image
(224 × 128) as input provides the same information with fewer
network parameters and computations than the original size
image. Piston and tip/tilt aberrations are not considered in
our work, and the network outputs the 4th to 35th order
Zernike coefficients.
Figure 3(b) shows the structure of the EffNet-block and the

overall attention process. EffNet-block uses depth-wise sepa-
rable convolution to replace the traditional convolution opera-
tion, which reduces the computational complexity and makes
the networkmore real-time. Channel and spatial attentionmod-
ules are sequentially applied to learn “what” and “where” to
attend in the channel and spatial axes, respectively[19]. F ∈
RC×H×W represents the input feature maps, Mc ∈ RC×1×1

expresses the channel attention module, Ms ∈ R1×H×W

expresses the spatial attention module, ⊗ denotes the element-
wise multiplication, and F and F

0
express the result of the chan-

nel attention and the final refined output, respectively.
The AM-EffNet is trained with an Adam optimizer at an ini-

tial learning rate of 0.001 over 150 epochs, which is based on the
PyTorch deep learning framework with NVIDIA GeForce 3070
GPU. Themean-square error (MSE) loss (regression error of the
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Fig. 3. Structure of the AM-EffNet for target-independent wavefront sensing.

Chinese Optics Letters Vol. 21, No. 6 | June 2023

060101-3



predicted Zernike coefficients) is used as the loss function, and
the batch size is set to 32.
Designed distorted grating generated 24,000 pairs of data,

which are divided into 10:1:1 for training, validation, and testing,
respectively. Each set of data consists of the feature image and
corresponding label, which is the wavefront aberration repre-
sented as the 4th to 35th order Zernike coefficients conforming
to the Kolmogorov turbulence distribution with different
degrees of distortion [original wavefront RMS (root-mean-
square) ranging from 0 through 1.5λ].
In particular, for the method proposed in this paper, it does

not need to use multiple targets for training. On the contrary, it
only relies on the simple point target scenes to collect positive
and negative defocus images for fine feature extraction, and then
uses the AM-EffNet to establish an accurate mapping between
the features and the incident wavefronts. It can be used to
achieve wavefront sensing of multiple scenes while the network
is well trained.

5. Comparison of Feature Extraction Methods

The effectiveness of the proposed normalized fine feature for the
wavefront sensing task is verified under a variety of features.
Figure 4 shows the comparison results of the different features
extracted from the same group of positive and negative defocus
extended target images.
In Fig. 4, the normalized fine features realize normalization

while combining the sharpness feature and the power feature,
which increases both the feature’s numerical stability and the
detail representation ability. Four feature extraction methods
are used to realize wavefront sensing for the same sets of test data
(labels are the same) and the same network (AM-EffNet).
Figure 4(e) shows the variation of loss for training using differ-
ent features from Figs. 4(a)–4(d). After testing, the RMSE
between the groundtruth and the recovered wavefront phase

of methods [Figs. 4(a)–4(d)] is 0.101λ, 0.086λ, 0.071λ, and
0.042λ, respectively, which has demonstrated that the proposed
feature can better achieve wavefront sensing with higher
accuracy.

6. Comparison of Defocus Degree

When using the PD method for wavefront sensing, the selection
of the defocus amount is critical. It can be known from
Refs. [20,21] that in order to obtain accurate wavefront sensing
results, the PV value of defocus aberration is generally within the
range of 1λ ± λ=2. Based on this, we simulate and design five dif-
ferent defocus amounts of distorted grating with a step size of
0.25λ referring to this range.
For the same network, hyperparameters, and environment,

the datasets obtained by distorted grating imaging with five dif-
ferent defocus amounts were used for training and testing, and
the results are shown in Fig. 5. We can see that the distorted gra-
ting with a defocus amount of 1.0λ has the highest wavefront
sensing accuracy, and from the outliers, the value of the
RMSE shows that ourmethod still has relatively stable wavefront
sensing ability for major wavefront distortion with this defocus
amount.

7. Applicability of Different Scenarios

In order to explore the applicability of this method to other im-
aging scenes, 2000 groups of mixed data from different targets
are used for further testing. The targets include a point target
and four types of extended targets with 400 groups each. The
positive and negative defocus extended target images can be
obtained by convolving with the positive and negative defocus
point spread functions respectively. In order to closely simulate
the application scenarios where targets are constantly switched
and changed, the five types of targets are randomly and uni-
formly distributed.
Figure 6 shows a group of the wavefront sensing results with

our method in each scenario, and Table 1 shows the average
Power featureTime domain feature Sharpness feature Normalized fine feature

(a) (b) (c) (d)

(e) lo
ss

epoches

time domain feature
power feature
sharpness feature
normalized fine feature

Fig. 4. (a) Time domain feature. The red boxes in (b) are the enumerated
power features, and the blue boxes in (c) are the sharpness features. We
can see that the normalized fine feature in (d) includes the information of
the sharpness and the power features with data distributed between 0
and 1. (e) Comparison of loss for different features in training.

Fig. 5. Residual wavefront at different defocus amount. The letters A, B, C, D,
and E in the abscissa express gratings with different defocusing degrees, and
the numbers 1, 2, and 3 represent three different degrees of atmospheric tur-
bulence in the range of 0–0.5λ, 0.5λ–1.0λ, and 1.0λ–1.5λ of the original wave-
front RMS, respectively. The red circles represent outliers.
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restoration results among five scenarios. After testing, the aver-
age SSIM between the restored wavefronts and the original
wavefronts is 0.948. The RMSE of the residual wavefront is
0.042, the RMSE/Truth is 5.6%, and the inference time is about
2.0 ms. The simulation results show that our method has robust
and high-accuracy wavefront sensing capability in a variety of
extended target scenes.

8. Conclusion

In this Letter, a distorted grating is designed to acquire the pos-
itive and negative defocus images of arbitrary targets simultane-
ously, and the normalized fine features irrelevant to the imaging
target itself are extracted as the input of the AM-EffNet, which
can achieve fast wavefront sensing with an inference time of
about 2.0 ms. Furthermore, the quantitative analysis shows that
the distorted grating with 1λ defocus amount has the best wave-
front sensing accuracy when the RMS of the original wavefront
is within 1.5λ. It has been proved that our method has an

effective wavefront sensing ability under diversified application
scenarios, which provides potential for future applications like
image restoration and real-time distortion correction.
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Table 1. Testing Results Based on Our Method.

Target type RMS (λ) Time (ms) SSIM RMSE/Truth

Point source 0.040 1.96 0.952 5.5%

Resolution chart 0.046 1.99 0.949 5.6%

Remote sensing 0.035 2.05 0.952 5.3%

Bird 0.038 2.04 0.948 5.4%

Nebula 0.051 1.96 0.943 6.1%
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