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Polarized hyperspectral imaging, which has been widely studied worldwide, can obtain four-dimensional data including
polarization, spectral, and spatial domains. To simplify data acquisition, compressive sensing theory is utilized in each
domain. The polarization information represented by the four Stokes parameters currently requires at least two compres-
sions. This work achieves full-Stokes single compression by introducing deep learning reconstruction. The four Stokes
parameters are modulated by a quarter-wave plate (QWP) and a liquid crystal tunable filter (LCTF) and then compressed
into a single light intensity detected by a complementary metal oxide semiconductor (CMOS). Data processing involves
model training and polarization reconstruction. The reconstruction model is trained by feeding the known Stokes param-
eters and their single compressions into a deep learning framework. Unknown Stokes parameters can be reconstructed
from a single compression using the trained model. Benefiting from the acquisition simplicity and reconstruction efficiency,
this work well facilitates the development and application of polarized hyperspectral imaging.
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1. Introduction

Due to the rich information reflected, polarized hyperspectral
imaging has been widely applied in environmental monitor-
ing[1], biological diagnosis[2], food safety[3], and other fields. In
terms of technological development, polarized imaging is
mainly based on Fourier transform[4], pixelated polarizers[5],
and compressive sensing (CS)[6]. Currently, all the above three
methods can achieve full-Stokes polarized imaging.
Typically, Fourier transform imaging spectropolarimetry

based on polarization modulation array (PMAFTISP)[7]

requires only one acquisition to obtain full-Stokes images. The
PMAFTISP includes three polarization modulation arrays and
three independent optical elements. System complexity and
channel crosstalk may affect imaging quality. In addition, pixe-
lated full-Stokes polarimeters require rotating polarizers[8] or
designing metasurfaces[9,10]. Moreover, the fabrication of preci-
sion pixelated devices is costly and time-consuming.

Recently, compressive full-Stokes polarimeters are con-
structed with only two commercial components, providing an
easy-to-operate and time-saving system. Full-Stokes images
can be reconstructed from two measurements compressed by
a quarter-wave plate (QWP) and a liquid crystal tunable filter
(LCTF)[11–13]. Furthermore, benefiting from a retarder followed
by a Wollaston prism with a splitting effect, full-Stokes images
can be reconstructed from one measurement[14]. Nevertheless,
the above compressive polarimeters all rely on traditional
reconstruction methods, such as the two-step iterative shrink-
age/threshold (TwIST) algorithm[15], which require careful
selection of polarization parameters and sparse basis.
This work develops full-Stokes single compression in polar-

ized hyperspectral imaging by introducing deep learning
reconstruction (DL-FSCPHI). Full-Stokes images are com-
pressed by a QWP and an LCTF into only one measurement.
In addition, the deep learning method can efficiently reconstruct
full-Stokes images in one step, avoiding sparse basis selection.
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2. DL-FSCPHI Method Overview

Figure 1 illustrates the overall schematic diagram of the DL-
FSCPHI method comprising imaging system and polarization
reconstruction. The imaging system mainly consists of a light
source (Thorlabs, OSL2), a QWP (Thorlabs, SAQWP05M-
700), an LCTF (Thorlabs, KURIOS-VB1/M), and a complemen-
tary metal oxide semiconductor (CMOS) detector (Basler,
acA2040-180km). The polarization state of light can be
expressed by four Stokes parameters. The polarization charac-
teristics of an optical device can be described by aMueller matrix
with 16 elements in four rows and four columns. The interaction
between light and optical devices is then reflected in the fact that
optical devices can adjust the polarization state of light.
Mathematically, theMueller matrix of an optical device is multi-
plied by the four Stokes parameters of the input light to obtain
the four Stokes parameters of the output light.
The Mueller matrices of the QWP and the LCTF are respec-

tively expressed as
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where θ �0° ≤ θ ≤ 180°� represents the fast axis angle of the
QWP, and β �0° ≤ β ≤ 180°� denotes the incidence axis angle
of the LCTF. Therefore, the Mueller matrix system can be cal-
culated by
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The four Stokes parameters of target light are modulated by
the system Mueller matrix. Then, the modulated first Stokes
parameter representing the total light intensity is detected by
the CMOS. By fixing the angles of the QWP and the LCTF
and by switching the center wavelength of the LCTF, a set of
polarization-compressed hyperspectral images are obtained
for each target.
The polarization reconstruction is divided into two steps:

model training and model testing. The model is trained using a
deep learning framework based on measured full-Stokes images
and detected images. The trained model is then used to predict
the unmeasured full-Stokes images from the detected images.

3. DL-FSCPHI Method Verification

The feasibility of the DL-FSCPHI method is verified by labora-
tory measurements of full-Stokes polarized spectral images. The
verification process mainly involves measuring full-Stokes
images as ground-truth values and designing reconstruction
strategy.

3.1. Full-Stokes images measurement

First, full-Stokes images are measured by establishing an imag-
ing system with a light source (Thorlabs, OSL2), a QWP
(Thorlabs, SAQWP05M-700), a linear polarizer (LP) (Thorlabs,
LPVISC100-MP2), multiple narrowband filters (Thorlabs,
FB520-10, FB530-10, : : : , FB690-10), and a CMOS detector
(Basler, acA2040-180km). The transmission axis angle of the
LP is α, with the Mueller matrix

MLP =
1
2

2
664
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cos�2α� cos2�2α� cos�2α� sin�2α� 0
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3
775:

(4)

Combined with theMueller matrix of the QWP in Eq. (1), the
polarization measurement matrix of the system is denoted asFig. 1. Overall schematic diagram of DL-FSCPHI method.
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A total of 18 spectral bands from 520 nm to 690 nm at 10 nm
intervals are obtained by switching filters. At each spectral band,
the full-Stokes images are acquired by five polarizationmeasure-
ments. In the five measurements, the fast axis of the QWP is
rotated to 0°, 22.5°, 45°, 67.5°, and 90°, respectively, and the
transmission axis of the LP is fixed at 45°. The polarized light
intensities detected by the CMOS are denoted as I0°, I22.5° ,
I45°, I67.5°, and I90°. Thus, full-Stokes images can be calculated by

S0 = I0° � I90°, (6)

S1 = 2�I22.5° − I67.5°� −
���
2

p
S3, (7)

S2 = 2I45° − S0, (8)

S3 = I0° − I90°: (9)

Obviously, full-Stokes polarized multispectral images mea-
sured in the laboratory can reflect the unique polarization dis-
tribution of each target. Therefore, laboratorymeasurements are
better suited to validating the proposed DL-FSCPHI method by
avoiding inaccurate assumptions about polarization distribution
based on polarization simulation strategies[16,17].

3.2. Reconstruction strategy design

Figure 2 shows the reconstruction strategy proposed in this
work. In the DL-FSCPHI method, the QWP angle θ and the
LCTF angle β are fixed to detect polarization-compressed hyper-

spectral images of the target. LetG1 ∈ RN1×N1
λ×Nx×Ny×1 andG2 ∈

RN2×N2
λ×Nx×Ny×1 represent the detected images of N1 targets and

N2 targets, where N1
λ and N2

λ are the number of spectral bands,
andNx × Ny is the number of spatial pixels. We assume that the
full-Stokes polarized hyperspectral images of the N2 targets,

denoted as F2 ∈ RN2×N2
λ×Nx×Ny×4, can bemeasured by traditional

methods, such as Eqs. (6)–(9). Therefore, the measured and
detected images of the N2 targets are used to train the

convolutional neural network (CNN) model built on the
Keras framework[18,19].
First, set epoch, batch size, and initial learning rate for the

model training. Let iepoch �1 ≤ iepoch ≤ epoch� and jbatch �1 ≤
jbatch ≤ batch = N2 × N2

λ=batch size� represent the ith epoch
and the jth batch being trained, respectively. For each iepoch,
the model is trained for times equal to batch. For each jbatch,
the model is trained based on the batch size images. The model
input is a polarization-compressed image containing Nx × Ny

spatial pixels. The polarization information is then extended
and enhanced by several convolution layers. The model finally
outputs the predicted full-Stokes images. The mean squared
error (MSE) between the predicted images and the measured
images is taken as the loss function of the training model.
The learning rate is updated after training several epochs.
Based on the trained model, the full-Stokes polarized

hyperspectral images of the N1 targets, denoted as F1 ∈
RN1×N1

λ×Nx×Ny×4, can be reconstructed from the detected
images G1.

4. Results and Discussion

To meet the model training requirements, we measure the full-
Stokes images with 400 × 400 spatial pixels in 18 spectral bands
for 67 targets. Moreover, 7 target images are randomly selected
as the test set, and the remaining 60 target images as the training
set. Figure 3 shows the measured full-Stokes images of three test
targets in 6 spectral bands from 560 nm to 660 nmwith an inter-
val of 20 nm.
In the DL-FSCPHI method, the fast axis of the QWP is

randomly rotated to 114°, and the incidence axis of LCTF is
0°. The reconstruction model consists of two convolutional
layers. The first layer has 4 convolution kernels with the size
of 1 × 1 to extend the polarization dimension. The second layer
has 4 convolution kernels with the size of 7 × 7 to enhance the

Fig. 2. The reconstruction strategy proposed in this work. F2 is the measured
full-Stokes images, while G2 is the detected polarization-compressed images,
containing N2 targets, Nλ

2 spectral bands, and Nx × Ny spatial pixels. The
epoch, the batch size, and the learning rate are parameters set for model
training. The iepoch and the jbatch refer to training the ith epoch and jth batch.
F1 is the full-Stokes images predicted from the detected polarization-com-
pressed images G1, containing N1 targets and Nλ

1 spectral bands.
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polarization information.We train the model for 20 epochs with
a batch size of 7 and a learning rate of 0.1. Figure 3 shows the
reconstructed images of the three test targets and their peak

signal-to-noise ratio (PSNR) and their structural similarity
(SSIM) values by the trained model and traditional TwIST algo-
rithm. Figure 4 shows the PSNR and the SSIM values of the three

Fig. 3. Measured and reconstructed full-Stokes images of three test targets in 6 spectral bands from 560 nm to 660 nm with an interval of 20 nm. The recon-
structed images are marked with the PSNR and the SSIM values.
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test targets in all spectral bands. It can be seen from both the
displayed images and the evaluation metrics that the trained
model successfully reconstructs the full-Stokes images. The
curve mutation at 610 nm in Fig. 4 is caused by the severe

blurring of the four Stokes images measured through the dam-
aged filter.
To further demonstrate the robustness of the DL-FSCPHI

method, the fast axis of the QWP is again randomly rotated
to 27°. In addition, the two convolutional layers of the model
are adjusted to 8 convolution kernels with the size of 3 × 3 in
the first layer and 4 convolution kernels with the size of 5 × 5
in the second layer. The two demonstrated models are labeled
DL-M1 and DL-M2, respectively. We also train the models with
a batch size 5, an epoch amount 40, and a learning rate 0.1 for the
first 20 epochs and 0.01 for the last 20 epochs. Figure 5 shows the
loss curves of the training models under different parameter set-
tings. Obviously, the loss of all training models is generally
reduced to below 0.0001, and the loss is more stable for the last
20 epochs. For each Stokes parameter, the PSNR values of all 7
test targets are averaged across all 18 spectral bands, the same as
the SSIM values. Table 1 lists the test results from the 8 trained
models with different parameter selections. Obviously, the test
results are almost unaffected by the changes in the QWP angle,
the convolution kernels, the epoch, and the batch size.
Compared with the TwIST algorithm, the average PSNR and
SSIM are improved by 13.55 dB and 0.28, respectively.

5. Conclusion

In conclusion, this work comprehensively introduces the DL-
FSCPHI method to achieve full-Stokes single compression with
deep learning reconstruction. A QWP followed by an LCTF
constitutes the polarization-compressed hyperspectral imaging
system with the fewest critical components, the highest com-
pression rate, and no moving parts. The full-Stokes images
are compressed in one snapshot by fixing the fast axis angle
of the QWP and the incidence axis angle of the LCTF.
Meanwhile, the deep learning-based reconstruction strategy is
proposed to simultaneously obtain full-Stokes images from
one compressed image. Furthermore, the feasibility and
effectiveness of the DL-FSCPHI method are fully verified based

Fig. 4. PSNR and SSIM values of the reconstructed full-Stokes images of the
three test targets in 18 spectral bands ranging from 520 nm to 690 nm at
intervals of 10 nm.

Fig. 5. Loss curves of the training models under different settings, including
two sets of training parameters (epoch = 20, batch size = 7 and epoch = 40,
batch size = 5), two sets of polarization angles (θ = 114°, β = 0° and θ = 27°,
β = 0°), and two convolution models (DL-M1 and DL-M2).
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on extensive laboratory measurements. Compared with the tra-
ditional TwIST algorithm, the proposed deep learning method
significantly improves the reconstruction effect of the last three
Stokes parameters in terms of image quality and evaluation met-
rics. The test results also verify the wide applicability of the
reconstruction strategy. This work demonstrates great promise
for developing deep learning reconstruction for full-Stokes sin-
gle compression and other applications.

Acknowledgement

This work was supported by the National Key Scientific
Instrument and Equipment Development Project of China
(No. 61527802).

References
1. Z. Li, Y. Xie, W. Hou, Z. Liu, Z. Bai, J. Hong, Y. Ma, H. Huang, X. Lei, X. Sun,

X. Liu, B. Yang, Y. Qiao, J. Zhu, Q. Cong, Y. Zheng, M. Song, P. Zou, Z. Hu,

Table 1. Average PSNR and SSIM Values of the Reconstructed Full-Stokes Images of 7 Test Targets in 18 Spectral Bands under Different Settings, Including Two
Sets of Polarization Angles (θ= 114°, β= 0° and θ= 27°, β= 0°), Two Convolution Models and One Traditional Algorithm (DL-M1, DL-M2, and TwIST), and Two Sets of
Training Parameters (Epoch = 20, Batch Size = 7 and Epoch = 40, Batch Size = 5).

θ = 114°, β = 0° DL-M1 DL-M2 TwIST

Evaluation metrics

Epoch = 20 Epoch = 40 Epoch = 20 Epoch = 40

Accuracy = 0.005Batch size = 7 Batch size = 5 Batch size = 7 Batch size = 5

PSNR/dB

S0 38.57 38.60 39.20 39.54 35.05

S1 22.19 22.27 21.95 22.41 10.41

S2 24.86 25.25 24.24 24.58 10.67

S3 31.99 32.83 30.27 32.19 10.54

Average 29.40 29.74 28.91 29.68 16.67

SSIM

S0 1.00 1.00 1.00 1.00 1.00

S1 0.79 0.79 0.78 0.79 0.51

S2 0.89 0.90 0.87 0.88 0.52

S3 0.98 0.98 0.97 0.98 0.52

Average 0.91 0.92 0.90 0.91 0.63

θ = 27°, β = 0° DL-M1 DL-M2 TwIST

Evaluation metrics

Epoch = 20 Epoch = 40 Epoch = 20 Epoch = 40

Accuracy = 0.005Batch size = 7 Batch size = 5 Batch size = 7 Batch size = 5

PSNR/dB

S0 37.58 38.04 38.95 38.76 29.37

S1 22.17 22.62 22.06 22.27 10.96

S2 24.87 25.17 24.38 25.22 10.37

S3 32.63 33.57 31.20 32.19 9.85

Average 29.31 29.85 29.15 29.61 15.14

SSIM

S0 1.00 1.00 1.00 1.00 1.00

S10 0.80 0.82 0.80 0.81 0.52

S2 0.89 0.90 0.87 0.88 0.52

S3 0.98 0.98 0.97 0.97 0.52

Average 0.92 0.92 0.91 0.92 0.64

Vol. 21, No. 5 | May 2023 Chinese Optics Letters

051101-6



J. Lin, and L. Fan, “In-orbit test of the polarized scanning atmospheric cor-
rector (PSAC) onboard Chinese Environmental Protection and Disaster
Monitoring Satellite Constellation HJ-2 A/B,” IEEE Trans. Geosci. Remote
Sens. 60, 4108217 (2022).

2. A. Tuniyazi, T. Mu, X. Jiang, F. Han, H. Li, Q. Li, H. Gong, W. Wang, and
B. Qin, “Snapshot polarized light scattering spectroscopy using spectrally
modulated polarimetry for early gastric cancer detection,” J. Biophotonics
14, e202100140 (2021).

3. J. Qin, K. Chao, M. S. Kim, R. Lu, and T. F. Burks, “Hyperspectral and multi-
spectral imaging for evaluating food safety and quality,” J. Food Eng. 118, 157
(2013).

4. Q. Naicheng, Z. Chunmin, L. Qiwei, and M. Tingkui, “Full linearly Stokes
interference imaging spectropolarimeter based on channeled polarimetric
technique with high optical throughput,” Opt. Lasers Eng. 110, 141
(2018).

5. J. Zhang, H. Luo, R. Liang, A. Ahmed, X. Zhang, B. Hui, and Z. Chang,
“Sparse representation-based demosaicing method for microgrid polarim-
eter imagery,” Opt. Lett. 43, 3265 (2018).

6. W. Ren, C. Fu, D. Wu, Y. Xie, and G. R. Arce, “Channeled compressive im-
aging spectropolarimeter,” Opt. Express 27, 2197 (2019).

7. Y.Wang, C. Zhang, T. Mu, T. Yan, Z. Chen, Z. Chen, and Y. He, “Design and
analysis of a Fourier transform imaging spectropolarimetry based on
polarization modulation array (PMAFTISP),” Opt. Commun. 460, 125101
(2020).

8. N. Hagen and Y. Otani, “Stokes polarimeter performance: general noise
model and analysis,” Appl. Opt. 57, 4283 (2018).

9. T. Mu, D. Bao, F. Han, Y. Sun, Z. Chen, Q. Tang, and C. Zhang, “Optimized
design, calibration, and validation of an achromatic snapshot full-Stokes im-
aging polarimeter,” Opt. Express 27, 23009 (2019).

10. C. Zhang, J. Hu, Y. Dong, A. Zeng, H. Huang, and C.Wang, “High efficiency
all-dielectric pixelated metasurface for near-infrared full-Stokes polarization
detection,” Photon. Res. 9, 583 (2021).

11. A. Fan, T. Xu, G. Teng, X. Wang, Y. Zhang, and C. Pan, “Hyperspectral
polarization-compressed imaging and reconstruction with sparse basis opti-
mized by particle swarm optimization,” Chemom. Intell. Lab. Syst. 206,
104163 (2020).

12. A. Fan, T. Xu, X. Wang, C. Xu, and Y. Zhang, “Scaling-based two-step
reconstruction in full polarization-compressed hyperspectral imaging,”
Sensors 20, 7120 (2020).

13. A. Fan, T. Xu, X. Ma, J. Li, X. Wang, Y. Zhang, and C. Xu, “Four-dimensional
compressed spectropolarimetric imaging,” Signal Process. 195, 108437 (2022).

14. Z. Xu, J. Meng, M. Zhao, T. Yang, D. Wu, R. Zhang, Y. Xie, and W. Ren,
“Snapshot compressive imaging full-Stokes polarimeter,” Opt. Commun.
509, 127883 (2022).

15. J. M. Bioucas-Dias andM. A. T. Figueiredo, “AnewTwIST: two-step iterative
shrinkage/thresholding algorithms for image restoration,” IEEE Trans.
Image Process. 16, 2992 (2007).

16. Z. Chen, C. Zhang, T. Mu, T. Yan, D. Bao, Z. Chen, and Y. He, “Coded aper-
ture snapshot linear-Stokes imaging spectropolarimeter,” Opt. Commun.
450, 72 (2019).

17. Z. Y. Chen, C. Zhang, T. Mu, Y. Wang, Y. He, T. Yan, and Z. Chen, “Coded
aperture full-Stokes imaging spectropolarimeter,” Opt. Laser Technol. 150,
107946 (2022).

18. X. Wang, T. Xu, Y. Zhang, A. Fan, C. Xu, and J. Li, “Backtracking
reconstruction network for three-dimensional compressed hyperspectral im-
aging,” Remote Sens. 14, 2406 (2022).

19. L.Wang, T. Zhang, Y. Fu, andH. Huang, “HyperReconNet: joint coded aper-
ture optimization and image reconstruction for compressive hyperspectral
imaging,” IEEE Trans. Image Process. 28, 2257 (2019).

Chinese Optics Letters Vol. 21, No. 5 | May 2023

051101-7

https://doi.org/10.1109/TGRS.2022.3176978
https://doi.org/10.1109/TGRS.2022.3176978
https://doi.org/10.1002/jbio.202100140
https://doi.org/10.1016/j.jfoodeng.2013.04.001
https://doi.org/10.1016/j.optlaseng.2018.05.019
https://doi.org/10.1364/OL.43.003265
https://doi.org/10.1364/OE.27.002197
https://doi.org/10.1016/j.optcom.2019.125101
https://doi.org/10.1364/AO.57.004283
https://doi.org/10.1364/OE.27.023009
https://doi.org/10.1364/PRJ.415342
https://doi.org/10.1016/j.chemolab.2020.104163
https://doi.org/10.3390/s20247120
https://doi.org/10.1016/j.sigpro.2021.108437
https://doi.org/10.1016/j.optcom.2021.127883
https://doi.org/10.1109/TIP.2007.909319
https://doi.org/10.1109/TIP.2007.909319
https://doi.org/10.1016/j.optcom.2019.05.056
https://doi.org/10.1016/j.optlastec.2022.107946
https://doi.org/10.3390/rs14102406
https://doi.org/10.1109/TIP.2018.2884076

	Deep learning reconstruction enables full-Stokes single compression in polarized hyperspectral imaging
	1. Introduction
	2. DL-FSCPHI Method Overview
	3. DL-FSCPHI Method Verification
	3.1. Full-Stokes images measurement
	3.2. Reconstruction strategy design

	4. Results and Discussion
	5. Conclusion
	Acknowledgement
	References


