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This paper investigates the combination of laser-induced breakdown spectroscopy (LIBS) and deep convolutional neural
networks (CNNs) to classify copper concentrate samples using pretrained CNN models through transfer learning. Four
pretrained CNN models were compared. The LIBS profiles were augmented into 2D matrices. Three transfer learning meth-
ods were tried. All the models got a high classification accuracy of>92%, with the highest at 96.2% for VGG16. These results
suggested that the knowledge learned from machine vision by the CNN models can accelerate the training process and
reduce the risk of overfitting. The results showed that deep CNN and transfer learning have great potential for the clas-
sification of copper concentrates by portable LIBS.
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1. Introduction

Flotation concentrates contain a variety of elements, which
directly affect their economic value. For example, the copper
content directly determines the price of the copper concentrate.
Other impurities, such as Fe, Zn, Pb, and S, will increase the cost
of smelting and be harmful to the environment[1]. Therefore, it is
urgent to develop a portable and rapid detection technology for
the in situ measurement of bulk copper concentrates.
Traditional analytical methods applied in the elemental

analysis of flotation concentrates require a series of time-
consuming and laborious sample pretreatments, resulting in
high costs[2]. Laser-induced breakdown spectroscopy (LIBS) is
an elemental analysis method. A laser beam is focused on the
sample surface to produce plasma. The spectrum of the plasma
can be used to characterize the elements contained in the analyte
and quantitative information[3], with the advantages of being
fast, microdestructive, no sample pretreatment, in situ and mul-
tielement simultaneous analysis[4]. LIBS is of wide interest in
many fields such as geology, coal quality analysis, metal recov-
ery, environmental protection, and health care[5–9]. Therefore,

LIBS has great potential in the application of rapid classification
of flotation concentrates.
The physical properties of concentrate samples vary with dif-

ferent batches and mining areas. Therefore, the measurement is
easily affected by matrix effects, which interfere with the detec-
tion of some trace elements[10]. As a result, the accuracy of clas-
sification is reduced. There is serious instability in the temporal
evolution of the laser-induced plasma, resulting in poor repro-
ducibility of LIBS spectra[11]. Considering the need for rapid
applications, portable LIBS systems have to be compact in size.
Some aspects (spectral resolution, spectral range, laser energy,
temporal resolution) of the portable LIBS system are not as
advanced as those of benchtop LIBS systems, which further
decreases the accuracy in classifying mineral samples[12]. In
response to the above problems, most studies adopted advanced
machine-learning models [K-nearest neighbor (KNN), support
vector machine (SVM), random forest (RF), backpropagation
neural network (BPNN)] to process LIBS spectral data, which
reduces spectral random noise and corrects the interference of
matrix effects, thereby improving classification accuracy[13–15].
However, the performance of the above models depends on
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feature selection methods. Different feature selection methods
have their own limitations and require a strong knowledge of
physics and spectral data processing[16].
As a branch of machine learning, deep learning can automati-

cally extract the features in one pass, which greatly simplifies the
workflow of machine learning[17]. In addition, deep learning is
considered adept at correcting the interference of multiple fac-
tors[18]. Therefore, it is currently attracting more and more
researchers’ interest. Convolutional neural networks (CNNs)
are one of the most widely used deep-learning models. Chen
et al. used a self-designed CNN to classify 119 rock samples from
five classes. They compared 1D-CNN with 2D-CNN and found
the classification accuracy of 2D-CNN was higher[17]. Li et al.
achieved a high-accuracy classification of geological samples
by employing a CNN with five convolutional layers and two
pooling layers. Their spectra were collected by MarSCoDe dur-
ing preflight testing[18]. Zhao et al. developed a 1D-CNN model
to classify iron ore, and for the first time interpreted the effec-
tiveness of the CNN model by the t-distributed symmetric
neighbor embedding algorithm (t-SNE)[19].
In general, increasing the depth of the CNNmodel is an effec-

tive approach toward increasing the performance of the
model[20]. At present, most of the existing studies on CNN
and LIBS designed their own convolutional structures with a
small number of convolutional layers (typically 2–5 layers,
due to the limited sample number), which are unable to compare
to the deep CNN (typically more than 100 layers, trained with
millions of data)[17–19]. Moreover, the design of the CNNmodel
structure is usually based on experience and is time-consuming
and laborious. Training the deep CNN model from scratch
would require millions of data to achieve the desired accuracy.
This data amount is impossible for LIBS research. To address
these issues, we introduce the concept of transfer learning.
Transfer learning aims to apply previously learned knowledge
(source domain) to solve new problems (target domain). It
achieves better performance and saves training time in a target
domain that has a small amount of data with the help of the
knowledge learned from the source domain that has sufficient
training data[21–23]. One of the practices of transfer learning is
to set the pretraining weights trained with sufficient data as ini-
tialization weights of the model and then train the model for a
second time with data from the target domain. This approach is
also known as fine-tuning of the model[24].
This paper explored the feasibility of applying the pretrained

CNNmodel to a portable LIBS system to classify copper concen-
trates via transfer learning without the need for redesigning the
CNN structure. The spectra of 11 classes of copper concentrates
were obtained using a self-developed portable LIBS device.
Four pretrained CNN models were tried, including VGG16,
ResNet18, DenseNet121, and InceptionV3. To demonstrate
the performance of CNNmodels and transfer learning in copper
concentrate classification, other machine-learning models,
feature selection, and dimension reduction methods were also
tried [principal component analysis-BPNN (PCA-BPNN),
PCA-SVM, Chi-square test-BPNN (CST-BPNN), and CST-
SVM]. The results showed that the performance of the CNN

models was higher than that of traditional machine-learning
models. This study shows the great potential of the deep
CNNmodel and transfer learning in the classification of copper
concentrates by portable LIBS, which can open the way for the
accurate classification of LIBS spectra of substances with similar
chemical compositions.

2. Experiments

2.1. LIBS equipment

The block diagram of the self-developed portable LIBS device is
shown in Fig. 1. The excitation source was a 1064 nm diode-
pumped solid-state (DPSS) laser (actively Q-switched Nd:YAG,
10 μJ/pulse, 10 ns pulse duration, 8 kHz repetition rate,
power fluctuation < 2%). The focused spot diameter is 10 μm.
The plasma emission spectra were collected by two self-designed
Czerny-Turner spectrometers with wavelengths ranging from
252 to 373 nm and 445 to 550 nm, with a resolution of 0.1 to
0.2 nm, equipped with a 2048-pixel linear CCD[25,26].

2.2. Experiment

The copper concentrate samples were provided by Zijin Mining
Group Co., Ltd. (Fujian, China). They were sampled from differ-
ent batches of bulk copper concentrate by a Zijin copper smelter.
We named them #1–#10 in this paper. The copper content of the
samples was determined by the iodometric method by analytical
testers of Zijin Mining Group Co., Ltd. We purchased a copper
concentrate standard material ZBK338C, named #11 in this
paper. The copper content of all 11 samples is described in
Table 1. The copper concentrate was weighed (about 0.2 g)
and pressed into a pellet under a pressure of 6 MPa for 120 s.
Each copper concentrate sample was pressed into three pellets.
Forty spectra were obtained at different positions of each pellet,
and a total of 3 × 40 = 120 spectra were obtained for each class.
A total of 11 × 120 = 1320 spectra were obtained. The laser rep-
etition rate was 8 kHz. The CCD exposure time was set to 65 ms.
In this setup, a spectrum was the accumulation of the plasma
generated by 520 laser pulses. To obtain a higher signal-to-noise
ratio, the pellets were kept moving during the measurement.
Typical LIBS profiles of copper concentrate pellets obtained
by the portable LIBS system are shown in Fig. 2. Considering
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Fig. 1. Block diagram of portable LIBS setup.

Vol. 21, No. 4 | April 2023 Chinese Optics Letters

043001-2



the need for rapid detection, each spectrum obtained at different
locations on the pellets was considered an independent spectral
sample in this paper.

3. Data Analysis

3.1. CNN classification model

CNN consists of convolutional layers, pooling layers, and fully
connected layers. The convolution layer shares the same weights
in all the subareas of the input matrix. Therefore, the CNN
model can comprise many convolution layers without the com-
putation cost exploding. Convolutional layers have strong
feature extraction capabilities, so CNN requires less data prepro-
cessing than BPNN. In a deep CNN model, the earlier convolu-
tional layer extracts more detailed and small-sized features, and
the later convolutional layers extract more macroscopic and
large-scale features.
We tried four publicly available and most successful CNN

models (VGG16, ResNet, DenseNet, and InceptionNet) for
transfer learning. The models were trained on ImageNet and
achieved high classification accuracy[27]. The ImageNet is a
benchmark data set in machine vision that spans 1000 object
classes and contains 1,281,167 training images[28].
VGG: The VGG network is the first CNN model that effec-

tively improves performance by increasing the depth; VGG16
only contains convolutional layers with 3 × 3 convolution ker-
nels and 2 × 2 pooling layers. It solves the problem of AlexNet’s

poor identification of detail features, laying the foundation for
later deep CNNs[20].
ResNet: ResNet proposed the residual module to solve the

problem of performance degradation after the depth exceeds
a certain level and has an ultradeep network structure (more
than 1000 layers)[29].
DenseNet: Compared with ResNet, DenseNet proposed a

more aggressive dense connection mechanism: all layers are
connected. Another major feature of DenseNet is feature reuse
through the connection of features on channels. These features
allow DenseNet to achieve better performance than ResNet with
fewer parameters and computational costs[30].
InceptionNet: InceptionNet increases the width of the

network, which is a different direction (horizontal) compared
to the way in which VGG stacks convolutional layers (vertical).
InceptionNet adopts the method of multidimensional convolu-
tion and reaggregation to widen the network structure and
reduces the number of parameters through the 1 × 1 convolu-
tion operation, which has achieved better results[31].
All CNN constructions in this article are done in PyTorch 3.3.

3.2. Two other machine-learning models as comparison

BPNNs and SVMs are widely applied with LIBS and perform
well with the complex analytes, but their performance is affected
by the feature engineering[32]. PCA is a well-known unsuper-
vised feature dimension reduction method that can alleviate
the problem of the curse of dimensionality[33]. CST is a feature
selection method for classification. By using individual CSTs,
each independent variable is examined to see whether it is inde-
pendent of the dependent variable. The smaller P-value of the
test statistic, the more correlated the independent variable is
with the dependent variable; therefore it is an important
feature[34].

3.3. Model performance evaluation

The overall discriminative classification ability of the model is
measured by accuracy, which is the ratio of all correctly classified
results to the total observed values in the data set. The calcula-
tion formula was as follows:

Accuracy =
Nr

N
, (1)

whereNr is the number of correctly classified results andN is the
total number of observed values in the data set.
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Fig. 2. Typical spectrum of copper concentrate acquired by portable LIBS
apparatus.

Table 1. Copper Contents of the Copper Concentrate Samples.

No. 1 2 3 4 5 6 7 8 9 10 11

Mass fraction (%) 18.86 19.68 20.58 21.80 22.49 23.66 24.42 25.52 26.21 27.73 27.62
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3.4. Deep CNN model retraining process

For model retraining, the last fully connected layer in the CNN
model was replaced with a fully connected layer with 11 neurons
for 11 classes of output. The training batch size and learning rate
were optimized by the grid search method. After optimization,
unified training parameters were applied for the four CNNmod-
els: the learning rate was 0.0001, the training batch size was 16,
and the learning rate was multiplied by a factor of 0.5 every 7
epochs. In the following section of this paper, we compared three
training processes that differ in details: (1) the convolutional
layers were frozen and only the fully connected layers were
trained; (2) the convolutional layers were unfrozen and both
the convolutional and fully connected layers were trained;
(3) both the convolutional and fully connected layers were
trained from scratch with random initial weights.

4. Results and Discussion

4.1. LIBS profiles of copper concentrate and its
pretreatment

Due to the low resolution of the portable spectrometer, the spec-
tral lines are crowded. Moreover, the weak spectral lines of trace
elements are interfered with by the strong spectral lines of the
matrix elements (Cu, Fe, and Si) and cannot be observed.
Due to the limited wavelength range, the spectral lines of ele-
ments such as Na and K are not in the spectral range. The only
observable elements were Cu, Mg, Si, Fe, Zn, and Ca. Figure 3
shows the elemental line intensities of Cu, Ca, Zn, and Mg in
the raw spectra of 11 copper concentrate samples. From
Fig. 3, due to the severe matrix effect and self-absorption, the
correlation between the spectral line intensity of Cu and the cop-
per content was weakened. In these four elements, most of the
standard deviations of the spectral line intensities were greater

than the difference in the class average intensities. Therefore,
using one or more spectral line intensities as the only basis
for classification might lead to many misidentifications. PCA
was performed on the raw spectra of 11 classes. The plots of the
first three principal components are shown in Fig. 4. From Fig. 4,
the spectra of #11 were clearly distinguished from other classes
in the two-dimensional space of principal components 1 and 2.
However, the spectra of the other 10 classes overlapped, which
indicated that it was difficult to achieve high classification accu-
racy using PCA scores as the extracted features.

4.2. Model construction and optimization

2D-CNN requires data to be input in the form of matrices. The
deep CNN models in PyTorch require a data size of 224 × 224
because these models are pretrained with data of such size, and
they would have the best performance on such size[27].
Therefore, we took the following steps to convert the 1 × 4096
data to a size of 224 × 224. We first zero-padded at the start and
the end of the spectrum and increased the feature number from
4096 to 6272. Then the spectrum was folded into the dimension
28 × 224. Finally, through pixel copying, each row of the 28 ×
224 matrix was copied into 8 rows to obtain a 224 × 224 matrix.
The specific process is shown in Fig. 5. The spectrum folded into
a 2D matrix is shown in Fig. 6.
The advantage of CNN is to automatically extract features, so

the spectra were directly converted into the 2Dmatrices without
any noise reduction and baseline correction.

Fig. 3. Elemental spectral line intensities of the raw spectra of copper con-
centrates from 11 classes.

Fig. 4. PCA plot of the raw spectra of copper concentrates from 11 classes.

Fig. 5. Steps for conversion of 1D spectra to 2D matrix.
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We first freeze all the parameters of the convolutional layers
and only perform the gradient descent update process on the
weights of the fully connected layers. The performance of the
four CNN models is shown in Table 2. From Table 2, the accu-
racies of the models were quite low, indicating that the features
extracted by the CNNmodels in the task of machine-vision clas-
sification had a very limited effectiveness on the LIBS classifica-
tion task. The reason may be that there are some differences
between the pictures of animal/vehicle/person and the spectral
matrices. For example, the spectral features are static, and the
position of a certain spectral line is the same in all spectral matri-
ces. Moreover, the shape of one spectral line may not be substan-
tially different from the other[35].
We tried to unfreeze the parameters of the convolutional

layers and perform the training process on all parameters of
the model. The performance of the four models is shown in
Table 3. The training process is shown in Fig. 7. The confusion
matrices are shown in Fig. 8.
From Table 3, in the case of unfreezing the convolutional

layer, the four CNN models have obtained better classification
accuracy, among which the accuracy of VGG16 was the highest,
with 95.1% on the validation set and 96.2% on the test set.
We also tried to initialize the weights randomly rather than

using pretrained weights, and found that the time cost for model
training increased by dozens of times, and the test accuracy of all
CNN models was below 90%, as shown in Table 3. Therefore,
using pretrained weights greatly improves the training speed
and the accuracy of CNN models in LIBS classification tasks.
The result indicated that the features extracted by the CNN
models in the task of machine vision were effective for the clas-
sification task of LIBS spectra to some extent.

4.3. Comparison with other machine-learning models

The PCA-BPNN, PCA-SVM, CST-BPNN, and CST-SVMmod-
els are constructed, respectively. The data sets were the same as
2D-CNN. The classification results of the fourmachine-learning
models are shown in Table 4. These results were directly com-
pared with those of CNN models, as shown in Fig. 9.
PCA reduced the feature dimension to 100 principal compo-

nents as the input of PCA-BPNN and PCA-SVM. The CST
selected 794 features as the input of CST-BPNN and CST-
SVM. The scores of the selected features were significantly
higher than those of background and noise. A schematic dia-
gram of the features selected by the CST is shown in Fig. 10.
The numbers of hidden layers and neurons of BPNN were

optimized by the grid search method. BPNN with multiple
layers showed little improvement compared to the single-layer
BPNN. Therefore, we chose single layer as the optimal hidden
layer number, and the number of nodes in the hidden layer
was 100. The accuracy of PCA-BPNN on the test set was
91.60%. The accuracy of CST-BPNN was 90.5%.
For the SVM model, the grid search method was applied to

optimize the penalty parameter and kernel function parameter.
The optimized penalty parameter C is 0.1, and the kernel func-
tion parameter γ is 0.001. The accuracy of PCA-SVM on the test
set was 85.2%, and the accuracy of CST-SVM was 87.5%.

5. Conclusion

In this study, portable LIBS technology combined with the pre-
trained CNN model and transfer learning was applied to accu-
rately classify copper concentrate samples from 11 classes. The
spectral lines of copper concentrate acquired by portable LIBS
are crowded, with few detectable elements, and the reproducibil-
ity is not as good as that of desktop LIBS. To highlight the advan-
tages of CNN models, no preprocessing is performed on the
raw spectra. Then, the 1D spectrum is reshaped into a 2D

Fig. 6. Schematic diagram of 2D spectrum (left) and 2D spectrum image
(right).

Table 2. Performance of the CNN Models with the Convolutional Layers
Frozen and Only Fully Connected Layers Trained.

Model Training Accuracy Validation Accuracy Test Accuracy

VGG16 73.4% 82.2% 79.9%

ResNet18 71.8% 68.6% 69.3%

DenseNet121 76.4% 59.1% 51.1%

InceptionV3 70.7% 65.9% 65.5%

Table 3. Performance of the CNN Model with the Convolutional Layer
Unfrozen and Trained with All Parameters.

Model Training Accuracy Validation Accuracy Test Accuracy

VGG16 99.7% 95.1% 96.2%

ResNet18 100% 94.7% 92.8%

DenseNet121 100% 94.3% 93.6%

InceptionV3 100% 93.6% 93.6%

NPT-VGGa 99.1% 88.63% 89.4%

NPT-ResNet 100% 85.2% 83.3%

NPT-DenseNet 100% 62.1% 61.4%

NPT-Inception 100% 80.7% 81.1%

aNPT means no pretraining.
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spectral matrix to meet the requirements of the CNN input. A
total of four CNN models were tried, namely, VGG16,
ResNet18, DenseNet121, and InceptionV3. First of all, the clas-
sification accuracy is poor when freezing the convolutional layer
and training only the fully connected layer, and the highest accu-
racy of the test set is only 79.9%. The features extracted by deep
networks on large image data sets cannot be directly applied for
LIBS analysis. Then, better performance is obtained with the
convolutional layer unfrozen and all parameters involved in

Fig. 7. Training process of the four CNN models.

Fig. 8. Confusion matrices of the four CNN models on the test set (two upper
panels, VGG16 and ResNet18; two lower panels, DenseNet121 and InceptionV3).

Table 4. Performance of the Four Machine-Learning Models.

Model Training Accuracy Validation Accuracy Test Accuracy

PCA-BPNN 100% 92.5% 91.3%

PCA-SVM 98.7% 89.8% 85.2%

CST-BPNN 100% 92.4% 90.5%

CST-SVM 100% 88.3% 87.5%

Fig. 9. Comparison of classification accuracy between CNN models and tradi-
tional machine-learning models on the test set.
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training. VGG16 performs the best, with a classification accu-
racy of 96.2% in the test set. It shows that after fine-tuning
the convolutional layer, the deep network can extract the effec-
tive features of the LIBS spectrum. Then, it was found that the
pretrained weights learned by large image data sets greatly
reduce model training time and increase the classification accu-
racy. Finally, the performance of the four CNNmodels was com-
pared with other four machine-learning models combining
feature selection or feature dimension reduction methods
(PCA-BPNN, PCA-SVM, CST-BPNN, CST-SVM), and the
results show that the accuracy of the CNN models was higher.
This study shows the great potential of the deep CNNmodel and
transfer learning in the classification of copper concentrates by
portable LIBS, which can open the way for the accurate classi-
fication of LIBS spectra of substances with similar chemical
compositions.
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