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Discriminating two spatially separated sources is one of the most fundamental problems in imaging. Recent research based
on quantum parameter estimation theory shows that the resolution limit of two incoherent point sources given by Rayleigh
can be broken. However, in realistic optical systems, there often exists coherence in the imaging light field, and there have
been efforts to analyze the optical resolution in the presence of partial coherence. Nevertheless, how the degree of coher-
ence between two point sources affects the resolution has not been fully understood. Here, we analyze the quantum-limited
resolution of two partially coherent point sources by explicitly relating the state after evolution through the optical systems
to the coherence of the sources. In particular, we consider the situation in which coherence varies with the separation. We
propose a feasible experiment scheme to realize the nearly optimal measurement, which adaptively chooses the binary
spatial-mode demultiplexing measurement and direct imaging. Our results will have wide applications in imaging involving
coherence of light.
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1. Introduction

Imaging is one of the most important applications in optics,
ranging from microscopy to astronomy. Achieving higher reso-
lution is the main task in the imaging problem, while the con-
ventional imaging system is limited to the diffraction of light,
which is defined by Rayleigh[1] and known as the Rayleigh cri-
terion. The Rayleigh criterion indicates that two incoherent
point sources are regarded as just resolved when the maximum
of the illuminance produced by one point coincides with the
first minimum of the illuminance produced by the other point.
Many theoretical works and technical methods have been pro-
posed to improve the imaging resolution, such as scanning elec-
tron microscopy[2,3] and stimulated emission depletion[4,5].
These methods aim to get a narrower point spread function
(PSF), which do not overcome the Rayleigh resolution limit
in principle.
With the development of quantum mechanics and statistics,

whether distinguishing two point sources in quantum formu-
lation could beat the Rayleigh resolution limit or not has been
re-examined. For this purpose, imaging was cast as a parameter
estimation problem[6–8]. Direct imaging based on intensity
measurement leads to infinite uncertainty of separation estima-
tion, as two incoherent point sources are close enough, which
is called Rayleigh’s curse[9], while the fundamental precision

limit of the estimation quantified by quantum Fisher informa-
tion[10] remains a constant. In the few years since, many
other works expanded this problem to more realistic scenar-
ios[11–21]. The works mentioned above only consider incoherent
sources, while imaging an object with coherent light is also an
essential problem. It has been shown that the resolution of
two coherent point sources depends on the relative phase
between them[22,23], and degree of coherence plays a key role
in the resolution[24,25]. In recent years, two point sources’ reso-
lution with partial coherence provoked wide discussions[26–28].
It was shown that the existence of coherence will reduce the res-
olution of two point sources when the separation tends to zero,
and Rayleigh’s curse will be resurgent in the completely coherent
case[26]. This conclusion has been extensively debated[27–29],
mainly focusing on the accuracy of the model and how to
parameterize the coherence. Ref. [30] points out that the number
of total photons detected by measurement devices is changed by
the degree of coherence, which is the main controversy in pre-
vious works. In this work, we renormalize the quantum state in
the imaging plane and model the imaging problem in terms of
the coherence of the sources, and this modeling approach gives a
clear picture of the effect of the sources’ coherence on the res-
olution, as well as the change in coherence during the transmis-
sion of the optical field. In addition, we also consider the degree
of coherence changes with the separation of two sources, which
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is a ubiquitous effect in practical imaging applications. We will
give the optimal measurement method for both cases.

2. Theory

We begin with two partially coherent point sources with the
transverse positions x1 and x2 in the object plane. The initial
state ρini can be modeled as a probabilistic mixture of incoherent
and coherent in-phase components,

ρini =
1 − p
2

�j1ih1j � j2ih2j� � p
2
�j1i � j2i��h1j � h2j�, (1)

where j1i: = ∫ dxϕ�x − x1�â†�x�j0i and j2i: = ∫ dxϕ�x −
x2�â†�x�j0i are defined with respect to creation operator
â†. ϕ�x� is the wave function of the photon emitted by
source Isource�X� and satisfies the normalization condition
∫ jϕ�x�2jdx = 1. An essential property of ϕ�x� in the source
plane is that it has infinitesimal width, especially compared to
the separation between two sources, and hence h1j2i=
∫ ϕ� �x − x1�ϕ�x − x2�dx = 0. p is the mixing probability[26]

and equals the degree of coherence g�1��x1 − x2�. Two point
sources will evolve into jψ1i and jψ2i after propagation through
the optical system, and

jψ ii =
Z

dxψ�x − xi�â†�x�j0i = exp�−iP̂xi�jψi, i = 1, 2,

(2)

where P̂, the momentum operator, equals −i∂x in the x repre-
sentation. The PSF ψ�x� = hxjψi is inversion-symmetric
[i.e., ψ�−x� = ψ�x�] in most cases of interest. We define the sep-
aration between two sources s = x1 − x2 and consider two sym-
metric point sources with the centroid �x1 � x2�=2 = 0. The
final state after evolution becomes

ρs = I0�jψ1ihψ1j � jψ2ihψ2j � p�jψ1ihψ2j � jψ2ihψ1j��, (3)

with I0 = 1=�2� 2dp� and d = Refhψ1jψ2ig. Ref·g denotes the
real part. Here, we assume the direction of transmission is
perpendicular to the image plane, so the two point sources
are in-phase with d = hψ1jψ2i. The full information about the
separation can be divided into two parts: the first one is encoded
in the wavefront of the light field, while the second one is
encoded in the ratio between the number of received photons
and that of the photons emitted by a single emitter[29,30].
However, to access the latter, one needs to calibrate the single
emitter, which is difficult in practice, especially when the sepa-
ration tends to zero. Therefore, Eq. (3) focuses on the first part of
the information.
Next, we will consider two cases. (i) The degree of coherence is

independent on the separation s between two sources. (ii) The
degree of coherence changes with s. An example of the latter case
is that the two sources are illuminated by an incoherent source,
which is shown in Fig. 1. According to the Van Cittert–
Zernike theorem, the relation between the degree of coherence

of two point sources, g�1��x1 − x2�, in positions x1 and x2, and
intensity distribution of illumination source can be stated math-
ematically by

g�1�object�x1 − x2� ∝ FfIsource�X�g, (4)

where Ff·g denotes Fourier transformation. If the intensity of
incoherent source follows Gaussian distribution, the degree of
coherence is also a Gaussian function of spatial separa-
tion p = jg�1�j = exp�−s2�.
To estimate s, we can perform a positive operator-valuedmea-

sure (POVM) denoted by fM̂ng on ρs, and get the probabilities
pn = tr�ρsM̂n�, fromwhich we can derive an unbiased parameter
estimator š as well as its variance Δ2s. The variance of N trials is
bounded by the Cramér–Rao inequality,Δ2s ≥ 1=�NFs�[10,31,32],
with the Fisher information (FI) Fs defined by

Fs =
X
n

1
pn

�
∂pn
∂s

�
2
: �5�

Upon writing ρs in its eigenbasis, ρs =
P

n λnjenihenj, quan-
tum Fisher information (QFI) for the parameter s can be calcu-
lated by[12,31]

Qs = 2
X
mn

jhemj∂sρsjenij2
λm � λn

, (6)

where ∂sρs = ∂ρs=∂s. We haveQs ≥ Fs, and the equality holds for
the optimal measurement[10]. To determine theQFI of the quan-
tum state in Eq. (3) with respect to parameter s, we decompose
the density matrix defined by Eq. (3) in terms of its eigenbasis,

je1i =
1�����������������

2�1 − d�
p �jψ1i − jψ2i�,

je2i =
1������������������

2�1� d�
p �jψ1i � jψ2i�, (7)

Illumination

Detection

A

B

1

2

imaging plane

source plane

Fig. 1. An example of two point sources with partial coherence. Two point
objects are illuminated by an incoherent optical source. Even though the illu-
mination source is completely incoherent, photons arriving at two points in
the object plane may share the common origin, which exhibits partial
coherence.
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and

λ1 = �1 − p��1 − d�I0, λ2 = �1� p��1� d�I0: �8�

Furthermore, the quantum state defined by Eq. (3) is rank-2.
Therefore the QFI can be reduced to a simpler form[12],

Qs = −
3
λ1

jhe1j∂sρsje1ij2 −
3
λ2

jhe2j∂sρsje2ij2

� 4

�
1 −

1
λ1

−
1
λ2

�
jhe1j∂sρsje2ij2

� 4
λ1

he1j�∂sρs�2je1i �
4
λ2

he2j�∂sρs�2je2i: (9)

By using the condition of the inversion-symmetric PSF, we
can get hψ jP̂kjψi = 0, for any odd k. Therefore, Eq. (9) can be
further simplified,

Qs =
�∂sλ1�2
λ1

� �∂sλ2�2
λ2

� 4λ1Γ1 � 4λ2Γ2, (10)

where Γ1 = h∂se1j∂se1i and Γ2 = h∂se2j∂se2i. For this quantum
state, the direct imaging that projects the state into the eigen-
states of the spatial coordinates x leads to the probability density,

ρ�x� = hxjρsjxi = I0�jψ1�x�j2 � jψ2�x�j2 � 2pψ1�x�ψ2�x��:
�11�

Because the two point sources are in-phase, we can consider
that ψ1�x� and ψ2�x� are real functions. The FI of direct imaging

Fd is defined by Fd = ∫ �∞
−∞

1
ρ�x�

�
∂ρ�x�
∂s

�2dx. To illustrate the results,
we consider, for convenience, Gaussian PSF ψ�x� =
�2π�−1=4 exp�−x2=4� with a normalized coordinate with respect
to the PSF’s width.

3. Results

For a constant degree of coherence, Fig. 2 shows that QFI varies
with the change of the separation s, which has a small difference
from Fig. 3 in Ref. [26], mainly due to the parameterization of
coherence. We reproduce the results in Ref. [28] in a different
way and confirm the validity of that. In the limit p = 0, which
corresponds to the incoherent model, QFI is independent of
s. While p = 1, which is the totally coherent case, QFI tends
to zero when s equals zero, and Rayleigh’s curse is resurgent.
Spatial-mode demultiplexing (SPADE), which projects the

light field into Hermite–Gaussian (HG) spatial modes[9], is an
optimal measurement method for resolving two incoherent
point sources. We will demonstrate that it is also optimal when
the two sources are partially coherent and the degree of coher-
ence is a constant. Here, we adopt themethod in Ref. [17], where
displaced Gaussian PSF can be expanded in the HG basis,

jψ1i = exp

�
−
s2

32

�X∞
n=0

sn

4n
�����
n!

p jϕni,

jψ2i = exp

�
−
s2

32

�X∞
n=0

�−s�n
4n

�����
n!

p jϕni, (12)

where jϕni = ∫ �∞
−∞ϕn�x�jxi, and ϕn�x� is the nth order HG spa-

tial mode[9]. SPADE is described by the POVM fΠ̂ng, where
Π̂n = jϕnihϕnj. The probability distribution is given by

pn = I0 exp

�
−
s2

16

�
s2n

16nn!
�2� 2p�−1�n�: �13�

The classical FI of SPADE calculated by Eq. (13) equals QFI.
The above analysis just considers the situation that the degree

of coherence is a constant. However, the degree of coherence p
may change with the separation s in practice. For example, as
previously stated, p = exp�−s2�. Next, we consider the precision
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Fig. 2. QFI for the estimation of the separation of two partially coherent
sources with different degrees of coherence p; the FI of SPADE equals the QFI.
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of different measurement methods. As shown in Fig. 3, the FI of
direct imaging Fd tends to zero when the separation approaches
zero. QFI derivated by Eq. (10) also drops to zero for infinitesi-
mal separation. Rayleigh’s curse cannot be avoided. However, in
the sub-Rayleigh region where the separation is smaller than the
width of the PSF, i.e., s < 2, the QFI is much larger than Fd ,
which indicates that there exists room to improve the resolution
in this region.
Next, we will give the measurement methods for resolving

sources with a separation-dependent degree of coherence. As
shown in Fig. 3, direct imaging cannot saturate quantum
Cramér-Rao bound (QCRB) when s is small. Now we analyze
whether SPADE measurement can saturate QCRB. Different
from the case with a constant degree of coherence p, the classical
FI cannot be calculated analytically with an infinite number
of HG modes. Therefore, we consider SPADE with a finite
number of modes, which has the POVM fΠ̂0, Π̂1, Π̂2; : : : ;

Π̂k, Î −
P

k
i=0 Π̂ig. When k = 0, the POVM has only two ele-

ments, and we call it b-SPADE[9,33,34]. The FI of SPADE with
the different mode number k is shown in Fig. 4. As k increases,
more FI can be gained from the SPADE.
Although increasing the number of modes can improve the

estimation precision, their difference lies mainly in the region
where s is large. Moreover, it is challenging to implement
SPADEwith large k. On the other hand, direct imaging performs
well for large s. Therefore, we propose a measurement method to
choose b-SPADE measurement and direct imaging adaptively.
Fd and FI of b-SPADE meet at s1 ≈ 2.47, and the choice is based
on the comparison between estimation of separation sest and s1.
We show the performance of the method with a numerical

simulation. As shown in Fig. 5, the starting point of the process
is the prior distribution p�s�, which is a uniform distribution in
the interval [0,10]. The probability of the measurement outcome
is described by the likelihood function p�njs�. Once the jth mea-
surement result nj is obtained, the posterior probability
p�sjnj, nj−1; : : : ; n1� is updated by Bayes’s rule,

p�sjnj; : : : ; n1� =
p�sjnj−1; : : : ; n1�p�njjs, nj−1; : : : ; n1�R
p�sjnj−1; : : : ; n1�p�njjs, nj−1; : : : ; n1�ds

,

(14)

where the integral is the normalization term. The optimal
Bayesian estimator is calculated by

sest =
Z

s × p�sjnj, nj−1; : : : ; n1�ds, (15)

which corresponds to the mean value of the parameter over the
posterior distribution. The simulation results for different s are
shown in Fig. 6.
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mate sest and s1, we can choose the b-SPADE or direct imaging. At each step,
the choice of different measurement methods is based on the estimation
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4. Discussions and Conclusions

Here we consider the situation in which the degree of coherence
between two sources is real. In general, the degree of coherence
can be complex[35]. According to the Van Cittert–Zernike theo-
rem, the phase of the degree of coherence,

φ =
π

λz
�r22 − r21�, (16)

where λ is the wavelength and z is the distance from the inco-
herent optical source to the object plane, as shown in Fig. 1.
In Eq. (16), r1 and r2 represent, respectively, the distances of
the two point sources from the center of the incoherent optical
source. The phase factor of degree of coherence can drop if the
two conditions can be identified[36]: (1) if the distance z is much
larger than z ≫ 2��r22 − r21�=λ�; (2) if the two point sources in the
source plane have equal distance from the center that r1 = r2. In
our work, a real degree of coherence is valid under these two
conditions. If the center of the two sources is unknown, more
than one unknown parameter exists in the wave function, and
the degree of coherence is complex; we leave this problem to
the future work.
With the development of quantum theory of resolving for two

incoherent point sources, quantum-limited resolution of two
partially coherent sources has aroused great discussion. There
are some controversies in the physical model of this prob-
lem[26–28,30]. In this work, we give a new perspective toward
resolving these controversies with a groundedmodel that explic-
itly considers the contributions from the coherence of the
sources and that is acquired through the propagation. For a con-
stant degree of coherence, quantum limit gives a finite resolution
between the two sources, and Rayleigh’s curse is resurgent only
in the completely coherent case (p = 1). If the degree of coher-
ence depends on the separation as given by the Van Cittert–
Zernike theorem, Rayleigh’s curse cannot be avoided.
However, in the sub-Rayleigh region where the separation is
smaller than the width of PSF, there exists room to improve
the resolution compared to direct imaging. SPADE is the opti-
mal measurement method for both cases, while it is challenging
to realize experimentally. For a separation-dependent degree of
coherence, we propose a feasible measurement method by adap-
tively choosing direct imaging and binary SPADE, and give the
simulation result, which corresponds well to the theory. Our
work can also be extended to the more complicated situations
in which more unknown parameters such as the centroid and
intensity ratio of the two sources are to be estimated.
Note: We are aware of the related independent work

in Ref. [37].
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