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We report continuous-wave deep red lasers at 696.6 and 698.6 nm in a Pr3�:YLF crystal pumped by an InGaN laser diode. A
Lyot filter was inserted into the cavity as a birefringent filter to select wavelength; the lasers at 696.6 and 698.6 nm were
obtained with a maximum output power of 1.36 and 3.11 W, separately. To the best of our knowledge, the output powers of
these two lasers are the highest to date, and this is the first scaling of the output power of the Pr3�:YLF laser to the watt
level at around 696 nm. In addition, the corresponding theoretical analysis and simulation were carried out to explain the
experimental phenomena.
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1. Introduction

Visible solid-state lasers have significantly advanced in power
and beam quality, owing to the development of pump sources
and crystals[1,2]. The commercially available laser diode (LD)-
pumped sources, having the advantages of compactness, high
power, and cost-effectiveness, are favored by researchers. Of
the many approaches to generate visible lasers, Pr3�-doped
materials, one of the successful candidates for high-power effi-
cient solid-state lasers that provide rich laser transitions have
aroused much interest in recent years. Various Pr3�-doped
materials such as the fluoride crystals[3–10] (Pr3�:LiYF4,
Pr3�:LiGdF4, Pr3�:BaY2F8, Pr3�:KY3F10, Pr3�:LiLuF4, etc.),
and the oxides crystals[11–15] (Pr3�:YAlO3, Pr3�-Mg3�:
SrAl12O19, etc.) have been extensively researched. Fluoride crys-
tals have lower crystal field strength and phonon energy com-
pared to oxides, which have greater potential for the
development of laser operation. As one of the most common
materials for visible lasers, the Pr3�:LiYF4 (YLF) crystal has been
shown to feature excellent optics, reasonable mechanical prop-
erties, and is a well-known laser gain medium with abundant
laser transitions in the visible spectral region[16–21].
In particular, the lasers at 696 and 698 nm in the deep red

region have served many different purposes. For instance, the
method of obtaining ultraviolet (UV) laser by direct frequency
doubling of the deep red laser is more compact and has a higher
conversion efficiency than the two-stage nonlinear process to
generate a UV laser, which is more suitable for obtaining

higher-power UV lasers[22–26]. Additionally, the 696 nm lasers
can be used for the spectral analysis of the methanol chlorophyll
equation[27], the enzymatic reaction steps of the photoreduction
of prochlorophyll-ester[28], and the improvement of the picture
resolution of the Cr(III)tris-oxalato complex[29]. The lasers at
698 nm are important not only for research into high-precision
atomic clocks[30], but also for nondestructive, real-time, or port-
able potato quality measurements[31].
To the best of our knowledge, the maximum output power at

around 698 nm was reported to be 1.5 W using an optically
pumped semiconductor laser (OPSL) as the pump source[32].
However, there are currently few reports of ∼696 nm Pr3�:YLF
lasers, due to the difficulty of generating lasers with relatively
small stimulated emission cross sections. The output power
reported at present was relatively lower, with the highest output
power of only 116 mW[20,33,34]. Therefore, the deep red lasers
based on Pr3�:YLF crystals still have the potential to achieve
power scaling.
In this paper, we demonstrate a compact and efficient InGaN

LD-pumped Pr3�:YLF crystal to generate deep red lasers at
698.6 nm (π-polarization) and 696.6 nm (σ-polarization). To
obtain the lasers in both polarization directions, a Lyot filter
was utilized as a birefringent filter to suppress the oscillation
of other lasers in the cavity. The maximum output power at
698.6 nm was up to 3.11W, with a slope efficiency of 31.4%. For
the σ-polarization 696.6 nm laser, a maximum output power of
1.36 W was achieved, with a slope efficiency of 15.0%. Notably,
both output powers are significantly increased compared to
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previous reports, and without saturation. This is the first time to
date that the output power of the LD-pumped Pr3�:YLF 696 nm
lasers broke into the watt level. Furthermore, theoretical models
of the input–output power characteristics were built to explain
the results for both wavelengths.

2. Experiment Setup

The schematic setup of the LD-pumped Pr3�:YLF continuous-
wave (CW) laser is depicted in Fig. 1. A blue InGaN laser diode
with a maximum output power of 24 W was used as the pump
source, giving a peak wavelength of approximately 444 nm. As
calculated from the relevant parameter manuals, theM2 factors
of the pump source were 46.9 and 15.5 in the x and y directions,
respectively. The pump beam was focused into the laser crystal
by a plano–convex focusing lens with a focal length of 50 mm.
The laser gain medium is a 15-mm-long a-cut Pr3�-doped YLF
crystal with 3mm × 3mm polished facets (Jiadong Optical Inc.,
Hefei, Anhui, China). It used the Czochralski method of growth,
and the doping concentration is ∼0.2% (atomic fraction). A typ-
ical plano–concave cavity consisted of an input plane mirror
(IM) and an output plano–concave coupler (OC) with a radius
of curvature R = 100mm. For the 698 nm laser, the length of the
physical cavity was optimized to 98 mm, while at 696 nm, it cor-
responded to 96 mm.
Figure 2 displays the transmission curves of the IM and OC.

The IM has high transmission from 400 to 630 nm and high
reflection (> 99.9%) from 690 to 800 nm. The coating of the
OC used in the experiment was designed and fabricated in
our laboratory using plasma direct-current sputtering technol-
ogy. To suppress 640 nm laser emission, the IM and OC were
coated with high transmissivity of 96.3% and 79.5% at 640 nm,
respectively. The OC has a low transmissivity of 2.2% at 696 nm
and 2.1% at 698 nm. To protect the crystal as well as laser cavity
stability from thermal effect, it was wrapped in indium foil and
placed in a copper block, which was kept at 16°C by a water-
cooled cooler. The laser crystal was placed close to the IM.
The full width at half-maximum (FWHM) of the pump laser
spectrum was ∼2.2 nm, resulting in a relatively low absorption
efficiency of 47% for the crystal.
We inserted a 2-mm thickness Lyot filter with a Brewster

angle into the laser resonator to select the wavelength. The oper-
ation performance of the single-wavelength 696.6 and 698.6 nm
laser was optimized, respectively. To measure the output power,

filters with high red transmittance and high blue reflectance
were placed behind the output to filter out the pump light.
The laser spectra in the experiment were measured by an optical
spectral analyzer (Ocean-Optics HR4000+), with a resolution of
about 0.25 nm.

3. Result and Discussion

The Pr3�:YLF crystal has various emission lines, for which par-
tial energy level scheme is illustrated in Fig. 3. The 444 nm emis-
sion peak of blue InGaN LD matches the ground state
absorption of 3H4 → 3P2. The lasers at 696.6 and 698.6 nm were
based on a four-level system operation. The population is
excited from the ground-state energy level (3H4) to the 3P2 level
by the pump source, and then rapidly relaxes to the metastable
3P0 level (denoted by Γ1). The 3F3 energy level is split into several
Stark sublevels due to crystal field effect[35]. Following the elec-
tric-dipole selection rules, the lasers at 696.6 nm (σ-polarization,
Γ1 → Γ3,4) and 698.6 nm (π-polarization, Γ1 → Γ2) are

Fig. 1. Schematic experimental setup of the LD-pumped Pr3+:YLF CW laser.

Fig. 2. Transmission curve of IM and OC.

Fig. 3. Partial energy level scheme of Pr3+:YLF crystal.
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generated by the transition from the 3P0 level to the 3F3 different
sublevels.
Figure 4 depicts the laser output characteristics. The spectra

were measured at the maximum output power with emission
peaks at 698.6 and 696.6 nm, respectively [see Figs. 4(b)–4(d)].
According to the previous studies on spectral analysis,[4] the
emission cross sections at 696 and 698 nm are smaller relative
to 721 nm (3P0 → 3F4). In addition, the positions at 696 and
698 nm are relatively close to the position at 721 nm in the spec-
trum. Thus, it is difficult to suppress the laser transition at
721 nm with the mirror manufactured in our laboratory. The
Lyot filter with a Brewster angle was inserted into the cavity
and rotated by a certain angle to obtain the π-polarized
698.6 nm laser [see Fig. 4(a)]. The maximum output power
was 3.11Wwith a threshold power of 0.9W; the slope efficiency
was 31.4%. The M2 factors were measured to be 3.1 and 2.3 in
the x and y directions, respectively [Fig. 5(b)]. Similarly, by tun-
ing the Lyot filter to the optimal position, we achieved the
696.6 nm laser in the σ-polarization direction with a maximum
output power of 1.36 W, a slope efficiency of approximately
15.0%, and a threshold power of 2.44 W, as shown in Fig. 4(c).
The beam M2 was 1.8 and 2.2 in the x and y directions,
respectively [Fig. 5(a)]. The embedded output beam images were
captured by a CCD. It is worth emphasizing that due to the

insertion of the Lyot filter in the resonant cavity, we measured
the laser power as a triple-end output. The tail-end output power
is 1.23 W (696.6 nm) and 1.33 W (698.6 nm) under the maxi-
mum input power, respectively. As can be seen in Figs. 5(c) and
5(d), the stability of the output power was recorded every 5 min
for a monitoring time of 1 h. The corresponding power fluctua-
tions at 696.6 and 698.6 nm were 0.46% and 0.52%, respectively.
In addition, the maximum output powers are the highest known
and have good linearity with no saturation.
To better understand the experimental results, we performed

some theoretical simulations on the relationship between output
power and absorbed pump power. For a four-level laser system,
the input–output characteristics can be determined by[36]

Pin =
AeγIsat
ηp

�Z
a

∈ �x,y,z�g�x,y,z�
�2Pout=TAeIsat� ∈ �x, y, z� � 1

dV

�−1
, �1�

where ηp indicates the pumping efficiency, γ indicates the loga-
rithmic loss per pass, Ae indicates the effective mode area of the
lasing mode, and Isat indicates the saturation intensity. The
power transmission in the laser is denoted with T , and the nor-
malized pump distribution inside the active material is denoted
with g. Pin and Pout are the input and output power, respectively.
The equation for the dimensional mode distribution factor of
the laser beam (∈) is

Fig. 4. Laser output performance at 698.6 and 696.6 nm. (a), (c) Experimental input–output relationship and simulation results; (b), (d) laser emission spectra of
698.6 and 696.6 nm.
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whereω represents the laser waist radius.When considering Pout

is limited to zero, we can write the equation as

Pth =
AeγIsat

ηp
R
a ∈ gdV

, �3�

where Pth is the threshold power, and the integral ∫ a ∈ gdV
considers the spatial overlapping of pump and mode
distribution.
For a circular Gaussian laser beam, by introducing the param-

eter α = �ω=ϖp�2, some analytical solution can be obtained,

Pout =
T
2γ

ηp
α�α� 2�
�1� α�2 �Pin − Pth�α��, (4)

Pth =
πγIsatϖ2

p

2ηp
�1� α�, (5)

where ϖp is the average pump light waist radius (ω =ϖp).
Through Eqs. (4) and (5), the output powers and thresholds

of the Pr3�:YLF lasers can be estimated and calculated based
on the emission cross sections and lifetime as well as the laser
geometer. The parameters we used in the simulations are listed
in Table 1.
As can be seen fromTable 1, the laser emission cross section at

698 nm is 9.79 × 10−20 cm2, which is much larger than 1.51 ×
10−20 cm2 at 696 nm. But the threshold power of the two wave-
lengths only differs by a factor of over 2. This is owing to the
saturation intensity of the 696 nm which is 7 times more than
that of 698 nm. The 696.6 nm laser with smaller emission cross
section requires a decrease in the average pump light waist
radius to reduce the threshold power of the laser, and reducing
the average pump size is beneficial in improving the output

Table 1. Parameters Used in the Simulation of Lasers at 698 and 696 nm.

λ (nm) σe (10-20 cm2) Isat (mW/μm2) ϖp (μm) γ T (%)

696 1.51 5.106 75 0.0155 0.42

698 9.79 0.785 108 0.023 1.55

Fig. 5. (a), (b) Measured corresponding M2 factors of 696.6 and 698.6 nm, respectively; (c), (d) power stabilities of lasers at 696.6 and 698.6 nm.
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power. The difference in loss (γ) between the two wavelengths is
mainly attributed to the different angles of the adjusted Lyot fil-
ter. Thus, the high emission cross section and low cavity loss are
key parameters to achieve high power and high slope efficiency.

4. Conclusion

In summary, we reported LD-pumped Pr3�:YLF CW deep red
lasers. By inserting a Lyot filter and optimizing the laser resonant
cavity, the π-polarized 698.6 nm laser and σ-polarized 696.6 nm
laser were obtained, respectively. For π-polarization, the maxi-
mum output power was up to 3.11 W. The slope efficiency was
31.4%, and no output saturation power was observed. A similar
trend also existed for the σ-polarization: a maximum output
power of 1.36 W was measured with a slope efficiency of
15.0%. To the best of our knowledge, the output power of these
two wavelengths is by far the highest for an LD-pumped
Pr3�:YLF crystal. This represents the first time to date that
the output power of an LD-pumped Pr3�:YLF laser at
696 nm reached the watt level, which is 10 times higher than
the previously reported. Moreover, theoretical simulations were
performed to explain the relationship between the output laser
power and the absorbed pump power, which were consistent
with the experimental results.With the continuous development
of solid-state deep red lasers, it is expected to expand the appli-
cation prospects in the visible region and achieve high-power
UV lasers by frequency doubling.
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