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The self-mixing interferometry (SMI) technique is an emerging sensing technology in microscale particle classification.
However, due to the nature of the SMI effect raised by a microscattering particle, the signal analysis suffers from many
problems compared with a macro target, such as lower signal-to-noise ratio (SNR), short transit time, and time-varying
modulation strength. Therefore, the particle sizing measurement resolution is much lower than the one in typical displace-
ment measurements. To solve these problems, in this paper, first, a theoretical model of the phase variation of a single-
particle SMI signal burst is demonstrated in detail. The relationship between the phase variation and the particle size is
investigated, which predicts that phase observation could be another alternative for particle detection. Second, combined
with continuous wavelet transform and Hilbert transform, a novel phase-unwrapping algorithm is proposed. This algorithm
can implement not only efficient individual burst extraction from the noisy raw signal, but also precise phase calculation for
particle sizing. The measurement shows good accuracy over a range from 100 nm to 6 μm with our algorithm, proving that
our algorithm enables a simple and reliable quantitative particle characteristics retrieval and analysis methodology for
microscale particle detection in biomedical or laser manufacturing fields.

Keywords: self-mixing interferometry; particle detection; continuous wavelet transform; laser processing; Hilbert
transform.
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1. Introduction

Thanks to its intrinsic advantages of high simplicity, low cost,
and the same resolution as that of the typical Michelson inter-
ferometer, self-mixing interferometry (SMI), also named optical
feedback interferometry (OFI), has beenwell-established in vari-
ous metrology applications, and not only in traditional indus-
trial fields, such as vibration displacement, velocimetry, and
absolute distance finding[1–5], but also in laser welding monitor-
ing, particle sizing, or label-free biomedical sensing[6–8].
Currently, SMI has attracted much attention in microparticle

detection in chemical and biomedical fields, since this simple
technique is very suitable for an integrated platform with micro-
fluidic chip and other devices like fuel nozzles[9–14]. Particularly,
SMI can be a promising candidate for real-time single-particle
detection for small dosage agent experiments in flow cytometry

or particle mixing. Moreira et al., for the first time, observed the
presence of single submicroscale particles in a 320 μm channel
using SMI technology. They applied a simple bandpass filter to
visualize the particle bursts in the noisy raw signal andmeasured
the single-particle velocity by fast Fourier transform (FFT)[15].
Contreras et al.managed to classify the single polystyrene sphere
size for a higher signal-to-noise ratio (SNR). They developed
a novel SMI scheme with edge-filter-enhanced self-mixing in-
terferometry (ESMI)[16], and they approached around 2 orders
of magnitude, even at a 10 m operating distance. Zhao et al.
presented a fringe counting method for single-microparticle siz-
ing based on the Hilbert transform (HT)[17]; the resolution was
still a half wavelength. Unlike the continuous SMI signal from a
bulk translating target, particle-induced signals represent a dis-
crete waveform burst. This innovative topic is still challenging:
the SMI signal is lower in amplitude and temporally discrete on
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a millisecond scale. The noises from the measurement environ-
ment can significantly reduce SNR and spoil the performance of
the sensor system. The resolution in this specific scenario is lim-
ited to a basic half wavelength; what is more, the retrieved fringe
pattern still presents the signal ambiguity in the waveform edge,
where some fringes are missing.
Besides measuring temporal signal waveform fringe num-

ber[18] and frequency spectral width[7], novel precise alternatives
for particle detection are still required. As a kind of phase obser-
vation tool, the phase-unwrapping method (PUM) has been
exhaustively studied in SMI sensor systems[19–27], and the spatial
resolution even can reach λ=67[28]. This processing method nor-
mally involves two steps: the first step is phase retrieval, and the
second step is to estimate the feedback factor and linewidth
enhancement factor for phase profile correction and displace-
ment reconstruction. Apart from the typical vibration or dis-
placement measurements, SMI signal phase assessment was
also employed in 2D scanning and surface profile mapping.
Lacot et al. proposed a new low-noise and phase-sensitive detec-
tion scheme for scattering-type scanning near-field optical
microscopy (sSNOM). They successfully implemented high-res-
olution phase imaging of silicon-on-insulator (SOI) optical
waveguides[29]. Considering the high resolution, PUM can be
a good candidate for particle detection; however, there appears
to be no related literature existing on this topic.
The paper is organized as follows. First, a theoretical frame-

work of SMI effect in the presence of a translating particle is
demonstrated, and during the particle passage, the dependence
of SMI signal phase variation on particle size is investigated.
Second, for effective noise elimination and phase retrieval, con-
tinuous wavelet transform (CWT) is directly applied to the
original SMI signal. And then a simple HT-based PUM is
employed for phase calculation and unwrapping, with the result-
ant phase variation corresponding to single particle extraction.
Finally, using a 532 nm solid-state laser SMI system, signal
bursts induced by different-sized polymer beads are acquired
and processed by our algorithm, and the measured phase varia-
tion values are compared with the simulation results.

2. Theory

When a laser shoots a beam onto a remote target and a portion
of the backreflected or backscattered light re-enters the laser cav-
ity, the interaction between the coupled feedback light and the
emitting laser field evokes a laser output power fluctuation. The
modulated laser output power P�t� in the presence of self-
mixing effect can be expressed by Eq. (1),

P�t� = P0�1�m�t� cos ϕ�: (1)

P0 is the original laser output power, andm is the modulation
index, which depends on the scattering intensity. ϕ denotes the
phase in the presence of the SMI effect, whose value can be cal-
culated by the well-known excess phase equation[30],

ϕ0 = ϕ� C�cosϕ� arctan α�: (2)

ϕ0 is the initial phase without feedback effect, C is the feed-
back coefficient, determining the feedback strength, and α is the
linewidth enhancement factor[31]. But when the target is a
microscale moving particle, the backward scattering light acts
as the feedback light, and the C value is typically smaller than
1[11]. The SMI system then operates in a weak feedback region,
and the phase hysteresis can be negligible. Due to the well-
known Doppler effect, the instant phase ϕ value can be approx-
imately given by[32,33]

ϕ�t� = 2πf d · t: (3)

f d is the Doppler frequency that depends on the particle velocity
and the incidence angle between the laser axis and the particle
translation direction θinc,

f d =
2V · cos θinc

λ
: �4�

Considering that the incident laser beam exhibits a Gaussian
spatial intensity profile, and the scattering intensity properties of
the particle are also strongly dependent on its position during
the flight, both phenomena influence the modulation index m
value. Thus, we assume them value varies as a Gaussian function
during the particle flowing inside the measurement volume, and
the signal expression can be rewritten by Eq. (5)[17],

P�t� = P0�1�m · cos f d · t� exp
�
−
�t − t0�2

2τ2

�
: (5)

τ is the particle passage period inside the measurable region of
the sensor system, whose dimension M can be simplified as the
combination of laser spot size K and the particle diameter D.
When t = t0, the laser beam shoots onto the particle or cell center
perpendicularly, and the particle center passes the light axis[18],

τ =
M

V sin θ
=
K � D
V sin θ

: �6�

During the signal burst period τ, the total phase variationΦ is
given by Eq. (7), as a linear function of τ, without dependence on
velocity,

Φ = 2πf d · τ: �7�

From Eqs. (6) and (7), the phase variationΦ can be derived as
a proportional function of the detectable region distance M by
Eq. (8). K and D are fixed in the given experiment; neither of
them depends on the velocity,

Φ =
4π
λ

·
cos θ
sin θ

· M =
4π
λ

·
cos θ
sin θ

�K � D�: (8)

The particle diameter D can be very easily calculated by the
given equation,
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D =
λ

4π
·
sin θ

cos θ
Φ − K: �9�

We simulate the signal burst and the phase variation with the
parameters in Table 1. The simulation results are shown in
Fig. 1. Within the signal burst period (dashed line), the phase
increases linearly as Eq. (7). The signal burst region can be
exactly distinguished by the phase profile.

3. Data Processing Method

According to the above-mentioned section, the particle-induced
SMI signal is in a temporally intermittent form during the particle
passage. Moreover, the signal burst normally is affected by white
Gaussian noise, impulsive noise, and DC pedestal[34,35]. The sig-
nal burst of each particle is ambiguous and merged in the noises,
so an efficient method of burst identification and denoising is
demanded. The CWT is a well-established method for investiga-
tion of time and frequency details of signals whose frequency
content varies over time[23,36,37]. Eventually, this technique per-
forms a correlation between a scaled/shifted wavelet basis and
the SMI signal. Because the resultant amplitude corresponding
to the uncorrelated and random noise is much lower than that
of the desired signal, CWT can implement noise removal in a
single step without additive complicated processing.
In this paper, CWT is applied to the SMI signal Sig�t�. Based

on CWT principles[21], the CWT coefficient W of the signal is
expressed as follows:

W�u, s� = 1��
s

p
Z �∞

−∞
Sig�t�ψ

�
t − u
s

�
dt, (10)

where s is the scaling factor, describing the time length of single-
period wavelet basis, and u is the shifting factor. By changing the

t and u values, CWT enables effective SMI signal decomposition
into different frequency components.
ψ is the wavelet basis. There are many types of wavelet basis,

such as Daubechies (db), Morlet, Coiflets, and Haarhere.
Considering the particle-induced frequency modulation signal
is sinusoidal-like in Eq. (5), we chose Morlet, whose capability
has been proven in SMI measurements[38], as the wavelet basis
in the data processing. The Morlet CWT basis with a frequency
ω0 in the time domain is defined as follows:

ψ�t� = π−1=4eiω0te−t
2=2: (11)

The HT can represent a signal in its analytical form over the
orthogonal plane and retrieve the phase information very con-
veniently without modifying the amplitude. So HT is very suit-
able for phase unwrapping in SMI measurements[17,19].
The original signal function f �t� can be transformed into a

complex analytical form as a combination of a real part ξ�t�
and an imaginary part Θ�t�, as in Eq. (12),

f �t� = ξ�t� � j · Θ�t�, (12)

andΘ�t� is calculated by performing a 90° phase shift of the real
part by an HT[17],

Θ�t� =HT�ξ�t��: (13)

Finally, the instant phase ϕ�t� can be calculated using inverse
tangent function,

ϕ�t� = arctan
ξ�t�
Θ�t� : (14)

After the HT, using a MATLAB-customized phase-unwrap-
ping routine, the realistic phase Φ can be calculated after the
unwrapping,

Φ = ϕ�t� � 2nπ, (15)

where n is an integer, and the value of n is 0, 1, 2, : : : .
The data processing flow chart is illustrated in Fig. 2. The

algorithm involves two steps: first, CWT for raw signal noise

Table 1. Parameters for Simulation.

Parameter λ θinc D K

Value 532 nm 25° 5 μm 1 μm

Fig. 1. Simulated signal from a 5 μm diameter particle. (a) Temporal signal;
(b) phase profile.

Fig. 2. Chart diagram of CWT-HT signal processing algorithm for particle-
induced SMI signal.
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elimination and burst retrieval; second, HT for phase estimation
and unwrapping function.

4. Experiment and Results

To validate the simulation and the capability of our algorithm, a
series of particle sizing measurements are performed with the
setup shown in Fig. 3. We select a compact diode-pumped solid-
state laser (DPSS) at 532 nm wavelength (Thorlabs, DJ532-10)
as the SMI laser source in the system. Due to the higher ratio of
fluorescence-to-photon lifetime, a DPSS SMI configuration has
higher sensitivity than the typical laser diode (LD) setup[39]. The
laser is controlled by a laser controller (Thorlabs, ITC4001), and
the injection current and the laser package temperature are kept
to be 240 mA and 24°C ± 0.1°C, respectively. The collimated
output light is spliced into two beams by a 1:9 beam splitter
(BS). One beam path (90%) as a detection path is focalized
tightly by an aspherical lens (Thorlabs, CMD240-C) and shot
onto the microparticle flux. The laser spot diameter K is around
1 μm, and the incidence angle θinc is 25 ± 1 deg . The other beam
path (10%) is directed to a fixed gain photodiode detector
(Thorlabs, PDF10A2) for SMI signal retrieving. Afterward,
the SMI voltage signal is digitized using a fast speed data acquis-
ition card (NI, 6361USB). The sampling frequency and acquis-
ition data number are 500 kHz and 217, respectively. Polystyrene
spheres (PSs) in seven different diameters (100, 500, 2, 3, 4, 5,
and 6 μm) are employed as the scattering objects, and the
particle stream is made by a homemade powder feeder. The
dimension coefficients of variation (CVs) of the particles are
better than 3%.
Thousands of monodispersed signal bursts in different par-

ticle sizes are captured and processed by our above-mentioned
algorithm. The raw signal burst without processing in 2 μm is
denoted by the black line in Fig. 4(a). As the figure shows, the
signal burst is merged in the strong noise floor, leading to great
difficulty in interference fringe observation. To reduce the noise,
we applied both bandpass filter (BPF) and Morlet-based CWT
upon the raw signal, respectively. Firstly, we analyze the signal
by CWT, and the scalogram of the real part of the CWT coef-
ficientW is then depicted in Fig. 4(b) to visualize both the spatial
and temporal components. It can be seen that the maximumW

value in light yellow color is located in the temporal range from
21.3 to 23.5 ms, representing the particle flight period inside the
laser illumination area, and the frequency is in a limited range
from 2 to 4 kHz.
We set the threshold to be 0.2 of the maximum W value and

eliminate the signal level under the threshold value. Besides the
CWT, we also use a fifth-order Butterworth BPF as reference[17]

for signal denoising. We set the filter cut-off frequency range to
be from 2 to 4 kHz, the same as the scalogram shows. The blue
line and red line denote the denoised bursts from the CWT and
the BPF in Fig. 4(a), respectively. The bursts are added ±0.4 V
amplitude offset for more convenient observation.
From the figures, it can be seen that even though the BPF can

eliminate the noise effectively in the red line, the burst margin
regions are still greatly ambiguous. There are some supernum-
erary noise fluctuations remaining in the dashed line circles,
which can be mistaken for extra signal interference fringes.
Compared with the BPF, a well-defined impulse waveform cor-
responding to a single particle can be distinguished easily by
CWT (blue line) without margin ambiguity.
Afterward, the denoised signals are processed by the HT-

PUM algorithm to calculate the phase profile. As shown in
Fig. 5, obviously, both phase profiles present good linear trend
as the simulation. However, compared with the one from the
BPF, the linear profile CWT bends at the burst period endpoint,
which is exactly the same as in the scalogram in Fig. 4(b). The
total phase variation from the starting point t = 21.3ms to the
ending point t = 23.5ms is around 31 rad, which is in good

Fig. 3. Schematic of SMI system.

Fig. 4. Signal burst of 2 μm PS particle. (a) Raw SMI signal (black), denoised
SMI signals by BPF (red) and CWT (blue); (b) scalogram of CWT.

Fig. 5. Phase profiles of the 2 μm PS particle SMI signal by BPF (red) and CWT
(blue).
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agreement with the calculation from Eq. (8). From the results,
we can conclude that even without the scalogram prediction,
CWT can precisely extract the signal scope in both time domain
and the phase profile regardless of the noise.
By using the threshold CWT algorithm, the particle signals in

other different particle sizes are also illustrated in Fig. 6, indicat-
ing the robustness of denoising ability with CWT.
Signal burst retrievals from each particle size are repeated

around 30 times; the mean values of the measured phase Φ as
a function of the particle diameter (blue marks) and the simu-
lation by Eq. (8) (black line) are depicted in Fig. 7. It should be
noted that the measurement results present a good linear profile
with respect to the linear fitting (red line), which is expected in
simulation. The measurement and simulation results are gener-
ally in good agreement over the whole given particle size range,
with a slight deviation. The measured laser spot size K value is a
little smaller than the simulated one. This can be explained by
the uncertain quantities of the measurement value before the

particle sizing experiment. The slope of the measurement trend
(the red line) is greater than the simulated one; the incident
angle deviation is themost credible reason for this phenomenon.
Unfortunately, both K and θinc discrepancies are difficult to
avoid in practice.

5. Conclusion

In this work, we present a simple and capable PUM algorithm
for single-particle size characterization. CWT and HT are
involved for noise elimination, individual particle-induced burst
retrieval, and phase calculation. The resultant phase variation
corresponding to single-particle modulation is extracted effi-
ciently compared with the typical bandpass filtering. The exper-
imental results showed good linear trend of SMI signal phase
variation with the particle size over a practical valuable measure-
ment range from 100 nm to 6 μm, which corresponds to typical
living cells and bacteria. The good consistency between the sim-
ulation results and measured signals has proven the reliability of
our theoretical model and the capability of phase observation
method in microparticle detection. Thus, the advantage of the
new approach with our CWT-HT-PUM algorithm can be more
pronounced for particle sizing in the biomedical and chemical
fields. Unlike in displacement or vibration measurements, a pie-
zoelectric translator (PZT) enables ultraprecise target motion on
a 0.1 nm scale. In our measurement, the artificial particle diam-
eter cannot be regulated less than 1 μm, and the particle dimen-
sion inhomogeneity is inevitable during fabrication. So the
minimum particle sizing limitation of our method cannot be
validated perfectly for themoment.More experiments with finer
particle size deviation could be performed in future.
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