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Usually, a multilens optical system is composed of multiple undetectable sublenses. Wavefront of a multilens optical system
cannot be measured when classical transmitted phase measuring deflectometry (PMD) is used. In this study, a wavefront
measuring method for an optical system with multiple optics is presented based on PMD. A paraxial plane is used to re-
present the test multilens optical system. We introduce the calibration strategy and mathematical deduction of gradient
equations. Systematic errors are suppressed with an N-rotation test. Simulations have been performed to demonstrate our
method. The results showing the use of our method in multilens optical systems, such as the collimator and single-lens
reflex camera lenses show that the measurement accuracy is comparable with those of interferometric tests.
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1. Introduction

As a low-cost, fast full-field measurement technique with high
dynamic range[1], phase measuring deflectometry (PMD) is
extensively used for wavefront measurement of transparent
phase objects[2–8]. PMDhas nanometer sensitivity at high spatial
frequency; only a computer, a camera, and a screen are required
whenmeasuring. Currently, for transparent wavefront measure-
ment, this technique is primarily used with three methods.
Canabal and Alonso[5] proposed a method for testing a single
thin lens by analyzing the difference between the deflection
images and standard images. Petz and Tutsch[6] reported the
movement of the screen twice in the axial direction to calculate
the propagation direction of transmitted light rays. The third
method was obtained by Dominguez et al.[7], i.e., a wavefront
and aberration measurement work for three different thin lenses
based on a software configurable optical test system[9–11]. In her
measurement, additional measuring devices such as a laser
tracker were used.
All the tested objects in these previous studies were single thin

lenses, but multilens optical systems such as single-lens reflex
(SLR) camera lenses, telescopes, or collimators were not appli-
cable. A complex multilens optical system usually has a larger
total length and multiple undetectable sublenses. The propaga-
tion direction of internal light rays cannot be calculated in the
multilens optical system.

In this study, a wavefront measuring method for multilens
optical systems based on PMD is presented. This method is
demonstrated by the wavefront reconstruction of three different
multilens optical systems, and the results are consistent with the
interferometry results.
All results in this study are presented with the deviation

between the real and ideal wavefronts.

2. Principle

The optical path of our method is shown in Fig. 1(a), comprising
a screen, a camera, and the test multilens optical system (shown
as an SLR camera lens). Computer-generated fringe patterns are
sequentially displayed on the screen. The camera captures the
deflection images of the displayed fringe patterns via the test
multilens optical system. Light is assumed to be emitted from
the camera plane. The camera is modeled by the usual pinhole.
c is the camera optical center. A light ray from the pixel point p
on the camera plane will finally hit the point q on the screen.
We use two paraxial planes to represent the camera lens and

the test multilens optical system; they are noted as the camera
lens paraxial plane (CLPP) and the test system paraxial plane
(TSPP) in Fig. 1(a), respectively. We can consider all the refrac-
tions in the test multilens optical system as occurring on TSPP.
The focal lengths of the CLPP and TSPP are f 1 and f 2, and d is

Vol. 21, No. 4 | April 2023

© 2023 Chinese Optics Letters 041201-1 Chinese Optics Letters 21(4), 041201 (2023)

mailto:13628045693@163.com
https://doi.org/10.3788/COL202321.041201


the distance between them. Always, d is larger than f 2. So, light
rays are not parallel after passing via the TSPP. All light rays will
focus twice at the optical center (c) and another point (c 0)
when d > f 2.
Furthermore, we use a new combined paraxial plane (CPP), to

represent the combination of the TSPP and CLPP, as shown in
Fig. 1(b). We can treat refractions on all the transparent phase
elements as caused on the CPP. c 0 is the optical center of
the CPP.
In Fig. 1, PP1 and PP2 are the first principal plane and second

principal plane of the CPP. lobj is the distance between PP1 and
the TSPP. L is the distance between the screen and PP1. The CPP

can be treated as coming from squeezing the part in Fig. 1(a)
from PP1 to PP2.
If the measurement setup is ideally aligned like interferom-

etry, the gradients vector, g , of the transmitted wavefront is rep-
resented as

g =
x2 − x1

B
, �1�

where B is the distance between the TSPP and the screen; x1 and
x2 are the coordinates of the light rays on the TSPP and the
screen, respectively. From Eq. (1), the wavefront can be obtained
by numerical integration[1,12,13]. The solutions of parameters x2,
B, and x1 in Eq. (1) are discussed in Sections 2.2, 2.3, and 2.4,
respectively.
However, in the actual measurement setup, equipment usu-

ally cannot align ideally. Misalignments will bring systematic
errors to the wavefront. The calculated wavefrontW can be writ-
ten as the following equation:

W = f int2�g� =WT �We =Wa �W s �We, (2)

in which f int2�·� stands for a 2D integration function;WT is the
actual transmitted wavefront, composed of rotationally symmet-
ric partWs and rotationally asymmetric partWa.We is the sys-
tematic error contributed primarily from the misalignments
such as decentration, tile, and noncoaxial condition. We must
remove We and W s from W . A relevant solution will be dis-
cussed in Section 2.5.

2.1. Calibration strategy of f and L

From the perspective of Fig. 1(b), the focal length f , of the CPP,
and the distance L, between the PP1 and the screen can be cali-
brated. Figure 2 shows the schematic of our calibration strategy.
The screen will be moved to different positions with respect to
the camera. For each position, the screen displays the same N
phase-shifted fringe patterns in the x and y directions. The cam-
era captures the displayed fringe images via the test multilens
optical system.
Then, the wrapped phases in the x and y directions can be

calculated using multistep phase-shifting[14,15] techniques.

Fig. 1. Schematic of our method. (a) Layout of the setup; (b) the part from PP1
to PP2 is squeezed into a new paraxial plane, CPP, which plays the role of the
camera lens in (b).

Fig. 2. Schematic of calibration strategy in our method.
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Pixel points whose values of the wrapped phases equal to π are
extracted as the feature points. The 2D world coordinates on the
screen can be calculated by these feature points.
Finally, multiple groups of 2D world coordinates are

obtained. The focal length f of the CPP can be calibrated by
Zhang’s approach[16]. L is the z-component of the translation
vector of the screen.
When calibrating, the screen must be put behind c 0. We will

prove it in Section 4.1.

2.2. Solution of x2
As to phase measuring deflectometry[17–19], the phase φ in the
captured image is a linear measure for the screen coordinates. x2
can be expressed as

x2 = R ·
Tus
2π

φ� T , �3�

where φ is the phase of the fringe; us is the pixel size of the
screen; T is the period of fringes on the screen; R is the rotation
matrix of the screen; and T is the translation vector of the screen
in x and y directions. The z-component in φ and T is 0.
The phase φ is always coded with the well-known multistep

phase-shifting[14,15] techniques. The screen displays N fringe
patterns in the x and y directions, each of which is shifted by
2π=N . Then, the phase can be separately calculated from the
N intensities in every pixel. The obtained phase values are always
wrapped within � − π, π�. To calculate the gradients using phase
values, these wrapped phases must be unwrapped[20,21].

2.3. Solution of B

When f is calibrated using the method in Section 2.1, the dis-
tance d between the CLPP and TSPP can be obtained. Since
the CPP is composed of two paraxial planes (CLPP and
TSPP), its focal length f can be written as Eq. (4)[22],

f =
f 1 f 2
Δ

, �4�

where Δ is the optical interval, and can be expressed as Eq. (5),

Δ = d − f 1 − f 2: �5�

From Eqs. (4) and (5), d can be written as Eq. (6),

d =
f 1 f 2
f

� f 1 � f 2: �6�

When d is obtained, imaging characters of the CPP are ascer-
tained. From Fig. 1(a), B can be calculated using the following
equation:

B = lobj � L, �7�

in which L can be obtained with the calibration strategy in
Section 2.1; lobj can be expressed as[22]

lobj = f 2 � xF � f , �8�

in which xF is the distance from the first focal point of the TSPP
to the first principal plane of CPP. xF can be calculated using
Eq. (9)[22],

xF =
f 22
Δ
: �9�

Combining Eqs. (5)–(9), B can be finally written as Eq. (10),

B =
f 2 f
f 1

� f 2 � f � L: �10�

2.4. Solution of x1
When the measurement setup is ideally aligned, x1 can be cal-
culated using the camera’s internal parameters. x1 can be
expressed as

x1 = d

�
uc
f 1
xc − δt

�
=δr , (11)

in which uc is the pixel size of the camera plane; xc is the coor-
dinates on the camera plane; δt and δr are the tangential distor-
tion and radial distortion, which could be obtained by an
additional calibration of the camera[16].

2.5. Removal of systematic errors

To remove the systematic errorsWe and rotationally symmetric
partW s, we will conduct anN-rotation test[23,24]. The test multi-
lens optical system will be measured at N angular positions,
equally spaced with respect to the optical axis. Each measure-
ment result at the angular position with the angle of 2π=N
can be written as Eq. (12),

8>>>>>><
>>>>>>:

Wθ =Wθ
a�Ws �We

Wθ�2π
N =W

θ�2π
N

a �Ws �We

..

.

Wθ�2π
N �N−2�=W

θ�2π
N �N−2�

a �W s �We

Wθ�2π
N �N−1�=W

θ�2π
N �N−1�

a �W s �We

, �12�

in which θ is the first angular position. W s and We will remain
unchanged when the test multilens optical system is rotated. The
average result of the N-rotation test[23,24] is the sum of W s and
We; this relationship can be expressed as Eq. (13),

W̄ =
1
N

XN−1

k=0

Wθ�k2πN =W s �We: (13)

In the end, we can now summarize our method. Rotationally
asymmetric wavefront Wa of the test multilens optical system
can be calculated with Eq. (14),
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Wa =W − W̄ , �14�

in which, by combining Eqs. (1), (2), (3), (10), and (11),W and
W̄ can be obtained using the following equations:

W = f int2

0
@R · Tus2π φ� T −

�
f 1f 2
f � f 1 � f 2

�
·
�
uc
f 1
xc − δt

�
=δr

f 2f
f 1
� f 2 � f � L

1
A,

(15)

W̄ =
1
N

XN−1

k=0

Wθ�k2πN : �16�

3. Simulation

In this section, we simulate the wavefront reconstruction proc-
ess. The simulated wavefront of the multilens optical system was
expressed as 0.1 × amount of peaks (300) (unit: mm), as shown
in Fig. 3(a).
Figure 3(b) is the schematic of the simulated measurement

setup. The focal lengths of the CLPP and TSPP were 20 and
60 mm. The distance d from the CLPP to the TSPP was
200 mm. Since d > f 2, the transmitted wavefront on TSPP
would attach a spherical wave, as shown in Fig. 3(b).
Figures 3(c)–3(g) are the restored wavefronts with different

screen equations. Figure 3(h) is the error map obtained by
subtracting Fig. 3(e) from Fig. 3(a). Figure 3(h) is just the rota-
tionally symmetric part Ws, which had been removed from
Fig. 3(a) by our method.
From this simulation, we can draw these conclusions.

1. Our method can effectively restore the rotationally
asymmetric wavefront Wa [by comparing Figs. 3(a) and
3(e)].

2. The measuring accuracy will be improved with the
increase of the distance between the TSPP and screen
[by comparing Figs. 3(c)–3(e)].

3. The impact of misalignments in moderation can be negli-
gible in our method [by comparing Figs. 3(d), 3(f), and
3(g)].

4. Experiment

Experiments were conducted to test the performance of our
method. A measuring system was developed, including a
CCD camera (IDS UI-2340SE-M-GL) and an LCD screen
(ASUS MB169B+) with the diagonal length 396.24 mm and
the resolution of 1920 pixels × 1080 pixels. The camera resolu-
tion was set at 1360 pixels × 1024 pixels. Pixel sizes of the screen
and camara were 0.179 mm and 4.65 μm. The focal length of the
camera lens was 25 mm. The screen displayed monochromatic
red fringes to avoid the effect of chromatic aberration. The wave-
front was finally integrated using the Southwell model[25].
To calculate the unwrapped phase, the three-frequency tem-

poral phase unwrapping[26,27] method was used. The screen dis-
played sequentially three groups of phase-shifting fringe
patterns with different frequencies (f l = 1, f m and f h varied with
different test objects). The phases at the group with the lowest
frequency were always absolute and unwrapped (because
f l = 1) and can be used to guide the unwrapping of the middle-
frequency fringes. Finally, high-frequency unwrapped phases
were obtained with the guide of the middle-frequency
unwrapped phases.
All the test multilens optical systems will be measured at five

equally spaced angular positions rotating around the optical
axis. These are the positions with the angle of 0°, 72°, 144°,
216°, and 288°, respectively.

4.1. Collimator

A commercial collimator was first selected as the test multilens
optical system, where the focal length is 550 mm. Figure 4 shows
the whole measurement process.
Figure 5 shows the test results. Because the rotation

accuracy was limited, we removed the first eight Zernike terms.
Figures 5(a)–5(e) are the wavefronts at the angular positions
with the angle of 0°, 72°, 144°, 216°, and 288°. Figure 5(e) is
the interferometry result at 288°.
In Figs. 5(a)–5(e), the wavefrontmaps at the angular positions

with different rotation angles are consistent and rotate equally
around the optical axis with 72° intervals. In terms of

Fig. 3. Simulation of wavefront reconstruction. (a) Simulated wavefront of the
multilens optical system; (b) schematic of the simulated measurement setup.
(c)–(g) Results when the screen was expressed as (c) z = 0.1x� 0.2y� 1000,
(d) z = 0.1x� 0.2y� 2000, (e) z = 0.1x� 0.2y� 8000, (f) z = 0.3x� 0.3y�
2000, and (g) z = 0.4x � 0.4y � 2000; (h) errors between (a) and (e).
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distribution and amplitude (RMS), the results using our pro-
posed method are consistent with the interferometry result.
Moreover, the key aspect of the calibration in Section 2.1,

i.e., placing the screen behind c 0, was verified. We detected
the position c 0 in advance, and L was calibrated twice when the
screen was placed behind and in front of c 0. Finally, as shown in
Fig. 6(a), L was calibrated as 284.43 mm when the screen was

behind c 0, which was consistent with the previous detection.
However, when the screen was placed in front of c 0, an incorrect
value of L = 713.80mm was calibrated, as shown in Fig. 6(b).
This can be explained by the simplified imaging model of the
double calibration, as shown in Figs. 6(c) and 6(d). When the
screen was behind c 0, the calibration process was calibrating a
pinhole camera, which had a focal length of f . However, when
the screen was in front of c 0, the camera model was not a
common pinhole, without even an optical center. Therefore,
when the screen is in front of c 0, the incorrect values of L and
f are calibrated.

4.2. SLR prime lens

Another commercial optical system was selected to be the sec-
ond test object: an F/1.8 Nikon Nikkor SLR prime lens, compris-
ing six sublenses, with a focal length of 50mm and total length of
39 mm. The whole measurement process is shown in Fig. 7.

Fig. 5. Test results (the first eight Zernike terms removed). (a)–(e) Wavefronts
at the positions with the angles of 0°, 72°, 144°, 216°, and 288°; (f) interferometry
result at 288°.

Fig. 6. Devices and simplified imaging models of the double calibration when
the screen was put (a), (c) behind and (b), (d) in front of c 0 .

Fig. 7. Measurement process. (a) Measurement setup and the test SLR prime
lens; (b) pictures acquired when using the temporal phase unwrapping.

Fig. 4. Measurement process. (a) Measurement setup and the test collimator;
(b) pictures acquired when using the temporal phase unwrapping.

Fig. 8. Test results (the first eight Zernike terms removed).
(a)–(e) Wavefronts at the positions with the angles of 0°, 72°, 144°, 216°,
and 288°; (f) interferometry result at 288°.
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Figure 8 shows the results of our method and interferometric
test. Also, due to the limited rotation accuracy, the first eight
Zernike terms were removed. The test results show an obvious
secondary coma remains in the wavefronts. Wavefront maps at
the angular positions with different rotation angles are still con-
sistent, and rotate equally around the optical axis with 72° inter-
vals. Results prove that themeasurement accuracy is comparable
with interferometric test. Certain blurred spots in Fig. 8 were
attributed to the dust on the lens surface.

4.3. SLR zoom lens

In the last experiment, we selected an SLR zoom lens as the test
multilens optical system: Nikon Nikkor SLR zoom lens, 18–
55 mm focal length, comprising 12 sublenses, as shown in
Fig. 9. The blue parts in Fig. 9 show the aspherical lens elements.
The focal length of this test SLR zoom lens was sequentially set to
18 mm and 55 mm. Two measurements under different focal
lengths were conducted to confirm thismethod. Figure 10 shows
the results (the first eight Zernike terms removed).

In Fig. 10, wavefronts at different angular positions under 18
or 55 mm focal length were consistent, and rotated equally
around the optical axis with 72° intervals. For the wavefronts
with the same angular positions, the maps under 18 and
55 mm focal lengths were still consistent. The results in
Fig. 10 confirm the feasibility of this method.

5. Summary

In this study, a wavefront measuring method for an optical sys-
tem with multiple optics is presented based on PMD. The test
multilens optical system and the camera lens are considered
as two paraxial planes. Next, a new paraxial plane is used to re-
present these two separate paraxial planes. We introduced our
calibration strategy and mathematical equations to calculate
the distance parameters in the measurement setup. The simula-
tions and experiments of three different types of multilens opti-
cal systems were performed, which confirm the proposed
measuring method. Systematic errors are suppressed using the
N-rotation test. The accuracy can be comparable to the inter-
ferometric test.
In the past, PMD was primarily used to test a mirror or a sin-

gle thin lens. The proposedmethodmakes it possible for PMD to
test a multilens optical system where the total length can reach
550 mm, similar to a collimator.
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