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1. Introduction

Passive mode-locked fiber lasers (PMLFLs) have attracted
extensive attention in the field of nonlinear science because of
their flexible configuration and high pulse quality'"), which pro-
vides an experimental platform for the study of dissipative sol-
iton (DS) dynamics in the framework of the Ginzburg-Landau
equation®™!, PMLFLs are typical dissipative nonlinear systems
with high noise sensitivity and rich physical mechanisms.
Among them, soliton collisions™®, soliton molecules!”"®!, and
soliton explosions™'?! have been extensively studied, both
experimentally and theoretically. In recent years, as a universal
modeling scheme of complex systems, deep learning has been
widely used in the field of nonlinear dynamics, such as predict-
ing pulse propagation dynamics''""'?), characterizing ultrashort
optical pulses!'®), predicting the dynamics in PMLFLs"*, and
modeling physically analytic soliton interactions'>"®).

The self-tuning algorithm of lasers is an important method of
efficient laser self-optimization!”), and prediction of soliton
dynamics can make the optimization more effective'®'), In
the past, predicting the behavior of laser systems in parameter
space in advance can greatly improve the prediction of the
laser>), which was mainly in the form of overall light field evo-
lution'?"). This brings a large memory requirement, resulting in
data redundancy in the soliton interaction scene. In addition, the
efficiency of laser self-optimization based on traditional algo-
rithms could be further limited in few-mode fiber lasers, where
the dimension of spatiotemporal dynamics is dramatically
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In this article, we use a convolutional autoencoder neural network to reduce data dimensioning and rebuild soliton dynamics
in a passively mode-locked fiber laser. Based on the particle characteristic in double solitons and triple solitons interactions,
we found that there is a strict correspondence between the number of minimum compression parameters and the number
of independent parameters of soliton interaction. This shows that our network effectively coarsens the high-dimensional
data in nonlinear systems. Our work not only introduces new prospects for the laser self-optimization algorithm, but also
brings new insights into the modeling of nonlinear systems and description of soliton interactions.

Keywords: fiber lasers; optical solitons; convolutional autoencoder neural network.

increased. Thus, it is necessary to reduce the dimensionality
of the overall light field data to optimize the efficiency of laser
self-tuning. The data dimensionality reduction based on convo-
lutional autoencoder neural network (CAENN) contributes to
the classification, visualization, communication, and storage
of high-dimensional data'??), and also plays an important role
in unsupervised learning and nonlinear feature extraction'*>**],
The purpose of data dimensionality reduction is achieved by
reducing irrelevant and redundant parameters in nonlinear
systems'*”). Using CAENN to study the dissipative soliton inter-
action process in PMLFLs can not only extract the main char-
acteristic parameters of soliton structure, but also enhance the
physical analyzability of the network by mining the relationship
between the compressed dense layer parameters and soliton
characteristic parameters [26-28]

In this Letter, double soliton collisions and triple soliton col-
lisions are numerically simulated in the framework of the com-
plex Ginzburg-Landau equation (CQGLE)"*), and the collision
dynamics is reconstructed by using the CAENN. The main char-
acteristic parameters of spectral evolution in the process of sol-
iton collision dynamics are extracted, and the data compression
is realized without physical information. By analyzing the rela-
tionship between the number of features and the loss function, it
is demonstrated that the minimum number of features that the
network can tolerate is equal to the number of independent
parameters of soliton interaction, showing that our network
realizes effective coarsening of soliton dynamics data and
extracts the minimum dimension of interaction space.
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2. Model

2.1. Model of dissipative soliton dynamics

PMLFLs contain a wealth of nonlinear dynamics, in which sol-
iton collision, one of the basic forms of soliton interaction, is
related to a series of complex physical mechanisms. By passing
a complex model with each device, the dynamics in PMLFLs can
be described by the master equation, namely, CQGLE"**!],

D\ ¢
r)u+ (ﬂ-l— iz)at’;+ (€ + i)|ul*u

ou _ 8  _
oz \1 4+ (lu]?)/I,

(ot )l - Tu / "l = (). 1)

Here, u stands for the complex light field. The gain saturation
includes g, 1, I, and (|u|?), where g, is the linear gain coeffi-
cient, r is linear losses, I is the saturation intensity, and the aver-
age energy is (|ul?) =+ [|u|?dt. D represent the group velocity
dispersion and is set as 1 for the anomalous dispersion situation
in this paper. The normalized real constants equation coeffi-
cients f3, €, 1, and v represent spectral gain bandwidth, cubic
nonlinear gain, quantic nonlinear gain, and quantic nonlinear
index, respectively. I" is related to g, and r. I' characterizes
the loss and recovery process of gain, which will lead to different
soliton structures with different drift velocities, resulting in
collision.

2.2. Model of CAENN

The neural network in this paper is composed of a convolutional
autoencoder. It can be regarded as two parts: encoder and
decoder!®®!. The encoder part reduces the input multidimen-
sional data to one-dimensional data, and the decoder part
restores the one-dimensional data to the same as the input
dimensional data. The learning of the encoder is conducted
by minimizing the deviation between the input and the output.

The network architecture used in this work is illustrated in
Fig. 1, combining input layer U;, convolutions, maxpool, fully
connected layers, upsampling, and output layer U,. The U;
and U, in our model are the original spectral intensity and
reconstructed spectral intensity, respectively. First, we fold the
spectral intensity data of each round trip from 1024 X 1 to 32 X
32 and input U; into the encoder layer. The encoder uses two-
dimensional (2D) convolutional layers with kernels of 3 x 3, and
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Fig. 1. CAENN architecture.
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the layers are 64,128, 256, and 512, respectively. Relu and 2 x 2
maxpool are used after each convolutional layer. Then, we
straighten it into one-dimensional data of 2048 and connect
the dense fully connected layers with 500 and » neurons, respec-
tively, to obtain the latent parameter. Through the fully con-
nected layer of n and 500, the one-dimensional data are
transformed into 2X2 X512 and then pass through the
decoder. The decoder is symmetrical to the encoder, and the
Relu activation function and 2 X 2 upsampling are used after
each convolutional layer, while the final output U, is 32 x 32.
In order to evaluate the correlation between the output and
ground truth, we calculate the cross-entropy loss function,

H(y.y)==) y‘Iny, @)

where y and y represent the ground truth and output, respec-
tively. Cross entropy represents the difference between two
probability distributions, where the smaller the value, the closer
the two distributions are.

3. Results

3.1. Analysis of double solitons collision

For the case of double solitons collision, the system parameter is
set as g, =24, r=2, €=058, u=-0.12, v=0, =01,
I;=0.24,I" = 0.015 by using CQGLE. Under the condition that
the system parameters remain unchanged, 10 groups of double
solitons collision time-domain data are generated by changing
the initial position of the pulse, as shown in Fig. 2. Different ini-
tial positions of solitons also affect the relative phase of solitons
in the evolution process.

Double solitons undergo relative displacement under the in-
fluence of gain dynamics, resulting in collisions to form soliton
molecules. The loss and recovery of the gain described by
parameter I" not only form the peak power difference between
the front and back edge solitons, but also provide the attractive
force between them. With the dynamic balance of the attractive
force brought by the gain dynamics and the repulsive force of the
spectral filtering, the soliton molecular structure with periodic
oscillation is formed. We use Fourier technology to process
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Fig. 2. Double solitons collision. (a) Time-domain evolution; (b) spectrum.
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the time-domain data to obtain the spectrum. Each group of
spectral data is 10,000 X 1024, where 10,000 represents the num-
ber of round trips, and 1024 represents the number of points per
round trip. The first nine groups of data have 90,000 round trips
for training, and the last group of data has 10,000 round trips for
testing.

The data set is normalized as the input of the constructed
CAENN for training and testing. The Adam optimizer is used
for training, and the learning rate is 0.0001. The batch size is
64 and the epoch number is 100. When the loss of 10 consecutive
epoch tests does not change, the learning rate will be changed to
one-tenth of the original. By changing the number # of neurons
in the dense layer, it is found that the lowest training loss is
0.0511, and the validation loss is 0.0511.

The reconstructed data U, is reverse-folded and spliced for
each circle to recover the complete spectrum, as shown in
Fig. 3(a). We find Pearson correlation coefficients (PCCs) with
each round trip of the original spectrum; the results are shown in
Fig. 3(b). PCCis used to reflect the degree of correlation between
two variables. PCC (R) is calculated as follows:
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Fig. 3. Double solitons. (a) Reconstructed spectra; (b) PCCs; (c) reconstructed
field autocorrelation trajectory; (d) soliton separation and relative phase of
the reconstructed 6000th round trip; (e) soliton separation and relative phase
of the original 6000th round trip.
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Fig. 4. Double solitons. (a) Relationship between the loss of double soliton
collision and number of dense n: (b) latent parameters.

For each round trip of spectral data, X represents the original
spectral data, X represents the mean value, Y represents the
reconstructed spectral data, and Y represents the mean value.
The range of R is (=1, 1), and the greater the absolute value,
the stronger the correlation. The average PCC between the
reconstructed spectrum and the initial spectrum is 0.9989, which
shows that CAENN can effectively reduce the dimension of the
collision dynamics. Fourier transform is performed on each
round trip of the reconstructed spectral data, and the filed auto-
correlation trajectory is obtained, as shown in Fig. 3(c).
CAENN reconstructs the double soliton collision dynamics
under gain dynamics, including the relative displacement of sol-
itons and oscillation dynamics. We compare the double soliton
separation and the relative phase of the reconstructed 6000th
round-trip data with the original data, as shown in Figs. 3(d)
and 3(e). The relative phase and separation between the two sol-
itons in the field autocorrelation trajectory are basically consis-
tent with the original data, showing that the extracted features
contain the basic information of interaction.

As shown in Fig. 4(a), when the reconstruction effect is the
best, dense 7 is at least 3. By extracting the latent parameter,
we find that the output of one column is 0 in Fig. 4(b), which
means that the number of effective neurons is 2, consistent with
the degrees of freedom in double soliton collision, namely, the
separation and relative phase between double solitons.

3.2. Analysis of triple solitons collision

For the case of triple solitons collision, the system parameter is
set as g,=2.5, r=2, €¢=058, y=-0.12, v=0, f=0.5,
I, =0.32,I" = 0.002 by using CQGLE. Under the condition that
the system parameters remain unchanged, by changing the ini-
tial position of the pulses, 10 groups of data of collision dynam-
ics between triple solitons are generated with different relative
phases; the typical collision dynamics is shown in Fig. 5. We also
classify the dynamics data, where the first nine groups with
90,000 round trips spectral data are for training, and the last
10,000 round trips are for testing.

Similar to double solitons, the data set is normalized and put
into the CAENN for training and testing. The training param-
eters are the same as those of double solitons, but the number n
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Fig. 5. Triple solitons collision. (a) Time-domain evolution; (b) spectrum.

of neurons in the dense layer is different. Compared with the
collision dynamics between two solitons, there is one more pulse
in the triple soliton collision, so the process will be more com-
plex and include a higher degree of freedom. By changing the
number # of neurons in the dense layer, it is found that the low-
est training loss is 0.0329, and the validation loss is 0.0328.
The reconstructed spectra are shown in Fig. 6(a), and the PCC
with each round trip of the original spectrum is shown in
Fig. 6(b). The average PCC between the reconstructed spectrum
and the original spectrum is 0.9987. Compared with the results
of double soliton collision, the decrease of similarity stems from
the increase of system complexity. Figure 6(c) shows the field
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Fig. 6. Triple solitons. (a) Reconstructed spectra; (b) PCCs; (c) reconstructed
field autocorrelation trajectory; (d) separation and relative phase of the
reconstructed 1680th round trip; (e) separation and relative phase of the origi-
nal 1680th round trip.
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Fig. 7. Triple solitons. (a) Relationship between the loss of double soliton col-
lision and number of dense r; (b] latent parameters.

autocorrelation trajectory. The reconstructed field autocorrela-
tion trajectory also includes the relative displacement of solitons
and oscillation dynamics. Figures 6(d) and 6(e), respectively,
show the reconstructed field autocorrelation trajectory and
the original field autocorrelation trajectory in the 1680th round
trip. The reconstructed spectrum can still accurately reproduce
the basic parameters of soliton interaction.

As shown in Fig. 7, when the reconstruction effect is the best,
dense number n is at least 4, consistent with the number of inter-
action parameters in triple soliton collision, i.e., the independent
relative phase and separation among three solitons. The feature
extraction of dynamics is based on the basic dimension of inter-
action. It shows that CAENN realizes the automatic coarsening
of dynamic data by expressing the nonlinear structure of pulses
with the neural network. CAENN can realize the minimum
potential representation of soliton collisions without giving
physical concepts. This representation is related to the number
of independent dimensions of the physical system.

4. Conclusion

In conclusion, we have achieved effective data dimensionality
reduction for double solitons and triple solitons collision
dynamics based on CAENN, in which the average similarity
between the reconstructed spectra and the original spectra is
more than 99%. We found that the minimum number of latent
parameters is consistent with the number of soliton interaction
parameters, indicating that the autocoding of dynamics is based
on the degrees of freedom of soliton interactions. This work will
further promote the study of data dimensionality reduction of
higher dimensional soliton dynamics in complex systems, such
as spatiotemporal mode-locked fiber lasers. The feature extrac-
tion of pulse dynamics based on CAENN not only helps to
greatly optimize the efficiency of laser self-tuning, but also pro-
vides new insights into the law of soliton interaction.
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