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For speckle-correlation-based scattering imaging, an iris is generally used next to the diffuser to magnify the speckle size
and enhance the speckle contrast, which limits the light flux and makes the setup cooperative. Here, we experimentally
demonstrate a non-iris speckle-correlation imaging method associated with an image resizing process. The experimental
results demonstrate that, by estimating an appropriate resizing factor, our method can achieve high-fidelity noncooperative
speckle-correlation imaging by digital resizing of the raw captions or on-chip pixel binning without iris. The method opens a
new door for noncooperative high-frame-rate speckle-correlation imaging and benefits scattering imaging for dynamic
objects hidden behind opaque barriers.
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1. Introduction

Imaging objects hidden behind opaque barriers is meaningful in
many fields, ranging from biomedical to defense applications.
Several approaches have been proposed in the past few decades,
such as wavefront shaping[1,2], deconvolution imaging[3–5], and
speckle-correlation imaging[6,7]. Especially, the speckle-correla-
tion imaging, which has the potential to image in currently inac-
cessible scenarios even with single-shot capture, is considered as
one of the most promising scattering imaging techniques[7,8].
The speckle-correlation technique has been extended for imag-
ing moving targets hidden behind an optically turbid medium
even in the bright-field scenario[9], multispectral imaging
through a thin scatterer based on spectral coding and com-
pressed sending[10], scattering imaging under strong ambient
light interference by refining the speckles[11], and noninvasive
superresolution imaging through scattering media at the nano-
meter level[12].
However, the above techniques have to contain an iris, which

is necessary to enlarge the size of speckle grains, as well as to

obtain high-contrast speckles. According to statistical optics
theories[13], the mean radius δ̄ of speckle grains generated by
a circular diffuser is determined by δ̄ = 1.22λv=D (λ is the wave-
length,D is the diameter of the diffuser, v is the distance between
the diffuser and the detector). Generally, the mean size of the
speckle grains δ̄ is smaller than the pixel size of the detector,
leading to reconstruction distortion or even reconstruction fail-
ure. It should be pointed out that most current literature attrib-
utes the reconstruction failure in this case to the violation of
the Shannon–Nyquist sampling theorem in the process of
capturing the speckle images[7,9,10,14]. Therefore, to solve this
problem, in the image acquisition process of pseudothermal-
light-illumination speckle-correlation imaging systems, an addi-
tional iris with a diameter of D 0 (D 0 is typically less than 1 cm,
and much smaller than the diameter of the diffuser D) is placed
between the diffuser and the detector to enlarge the mean radius
of speckle grains and yields high-contrast speckles[7–10,12,14]. As
for the LED-illumination system, a small enough aperture, lying
between the LED and object, is used to limit the size of a light
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spot projected onto the diffuser, which acts as an iris to reduce
the effective area of the diffuser[11,15–17]. Basically, the above
speckle-correlation imaging methods are both essentially co-
operative because the position and size of the iris require it to
be adjusted with the object’s position and size to obtain a
high-quality speckle autocorrelation.
Here, we propose a non-iris speckle-correlation imaging tech-

nique that can achieve a high-fidelity object reconstruction from
a low-quality non-iris speckle image by applying an image-resiz-
ing or pixel-binning procedure before the conventional phase-
retrieval reconstruction algorithm. An empirical formula was
presented to estimate the suitable scale factor based on the spe-
cific experimental parameters. The proposed method is robust
and universal and can relieve the experiment complexity of
speckle-correlation imaging. Furthermore, the proposed
method implemented by on-chip pixel binning will remarkably
increase the frame rates, which will further benefit speckle-
correlation imaging for dynamic objects, as well as high-frame-
rate video technique of objects hidden behind opaque barriers.

2. Method and Experiment

A non-iris speckle-correlation imaging system is shown in
Fig. 1(a). A transmissive object was illuminated by a narrowband
spatially incoherent pseudothermal source that was generated by
combining a continuous-wave laser (λ = 532 nm) and a rotating
diffuser (LSR-3005, Edmund Optics); then the light was scat-
tered by a diffuser (DG20-220-MD, Thorlabs) and imaged by
a lensless monochrome camera (QHY600, pixel size 3.76 μm,
9600 pixels × 6422 pixels) directly. The size of the object is lim-
ited by optical memory effect[18,19], i.e., the object’s size should
not extend greatly beyond uλ=πL, where u is the distance
between the object and the diffuser, λ is the wavelength, and
L is the scattering media thickness[7,20]. The key feature here
compared to the traditional single-shot speckle-correlation im-
aging (SSCI) systems mentioned previously is the absence of the
iris next to the diffuser.

Actually, the absence of an iris will lead to a smaller mean size
of the speckles in the captured speckle image and result in
reconstruction failure, as analyzed in Refs. [7,9,10,14]. Herein,
with respect to these poor-quality non-iris speckle images, we
propose a processing approach to achieve successful reconstruc-
tions. As shown in Fig. 1(b), first, the speckle image acquired
without the iris is resized to a lower pixel resolution by the
scale factor s, whose estimate method will be discussed in
detail in Section 3; second, the autocorrelation operation and
Fourier transform are successively performed on the resized
speckle image to obtain the power spectrum of the object;
third, the object can be reconstructed through phase-retrieval
algorithms[7].
The autocorrelation of the speckle image is essentially iden-

tical to the object’s autocorrelation[7], namely, I⋆I = �O⋆O��
C, where the symbol ⋆ denotes the autocorrelation operation
and C is a constant background term. Therefore, the object
can be retrieved from the autocorrelation of the speckle image
by a phase-retrieval algorithm. Herein, the autocorrelation of
the speckle image I is calculated according to the Wiener–
Khinchin theorem, i.e., I⋆I = F−1fjFfIgj2g, where the symbols
F andF−1 denote the Fourier transform and the inverse Fourier
transform, respectively. After that, the power spectrum of the
object can be obtained by jF fOgj2 = F fO⋆Og = F fI⋆I − Cg.
To reconstruct the object from this power spectrum, we used
the Ping-pong phase-retrieval algorithm[21], which combines
two typical Fienup-type algorithms [error reduction (ER) algo-
rithm[22] and hybrid input-output (HIO) algorithm[23]]. In the
iteration process, the feedback parameter β in HIO is changed
stepwise. The β value decreases from 3 to 1 in steps of 0.1, with
each step iterated 30 times. The ER algorithm is performed after
each HIO algorithm. The alternation between the HIO and the
ER strategies prevents the algorithm from being stuck in local
minima.
One group of reconstructed results by the Ping-pong algo-

rithm is shown in Fig. 2. It can be observed that our non-iris
SSCI system, combined with the proposed processing method,
can achieve high-quality reconstruction, and even small struc-
tural details can be faithfully recovered, such as the font features
of the English letters [Figs. 2(d2) and 2(d3)] and the Chinese
character [Fig. 2(d4)].
The resizing process is performed by resizing the original

speckle image to a lower pixel resolution by a proper scale factor.
For a scale factor s (0 < s ≤ 1), the resizing of an original speckle
image I0 ofM × N pixels (M andN denote the numbers of rows
and columns) returns an image that is s times the size of I0,
i.e., sM × sN . The interpolation method in the resizing process
is not unique. Generally, bilinear interpolation (triangular
kernel)[24], cubic interpolation (cubic kernel)[25], and box inter-
polation (box-shaped kernel)[26] all work well in our tests.
Herein, the box interpolation was used.
It is worth noting that the resizing processing plays a pivotal

role in successful reconstructions, which can significantly
improve the signal-to-noise ratio (SNR) of the speckle pattern’s
autocorrelation and the corresponding power spectrum for the

Fig. 1. (a) Experimental schematic of non-iris SSCI system. RD, rotating dif-
fuser; u, 35–50 cm; v, 15 cm; (b) flow chart of the proposed method.
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subsequent reconstruction process. As shown in Fig. 2, the raw
speckle images of 6000 pixels × 6000 pixels [Fig. 2(a1)–2(a4)]
were all shrunk to a size of 1800 pixels × 1800 pixels [Fig. 2(b1)–
2(b4)] by a scale factor of s = 0.3. Visually, the size and the SNR
of the speckle grains are enhanced after resizing because the raw
little speckle grains in a spatial neighborhood merge into one in
the process of image resizing.

3. Discussion

To analyze this problem quantitatively, we compare the autocor-
relation of the speckle images at different scale factors with the
autocorrelation of the original object (symbol “5” of Fig. 2).
Furthermore, the peak signal-to-noise ratio (PSNR) is intro-
duced to evaluate the quality of the autocorrelation at different
scale factors. The object’s autocorrelation [Fig. 3(a1)], i.e., the
ideal autocorrelation, serves as the reference image for this
full-reference assessment approach.
As shown in Fig. 3, the autocorrelation of the raw non-iris

speckle image [see Fig. 3(a5)] in fact shows poor quality and
structural similarity visually and quantitatively compared with
the ideal autocorrelation [Fig. 3(a1)]. As a result, its correspond-
ing power spectrum [Fig. 3(b5)] is of poor quality as well, whose
low spatial frequency component (i.e., the central region of the
power spectrum) is blurred compared with that of the ideal
power spectrum [Fig. 3(b1)]. Since the autocorrelation of the
raw speckle image (or the corresponding power spectrum) is
the input of the subsequent reconstruction algorithm, the
reconstruction distortion or even failure [see Fig. 3(c5)] can
be expected.
Though the resizing process further enlarges the size of the

merged pixel, surprisingly, the autocorrelation’s PSNR indices

of the resized speckle images turn out to be higher and vary
with the scale factor, as shown in Fig. 3(e). This implies that
the resizing process indeed improves the structural similarity
between the autocorrelation of the speckle image and the object.
Furthermore, a high-fidelity reconstruction requires a power
spectrum with sharp low-frequency components and enough
high-frequency components. At this point, compared with the
ideal power spectrum, an excessively low scale factor will
cause loss of a high spatial frequency component (outer region
of the power spectrum), as shown in Figs. 3(b2) and 3(d).
Meanwhile, an excessively high scale factor will cause distortion
of low spatial frequency component, as shown in Figs. 3(b4),
3(b5), and 3(d). As shown in Fig. 3(b3), a suitable scale factor
will lead to a high-quality power spectrum that shows great
structural similarity with the ideal one for both low and high
spatial frequency components.
In more detail, the autocorrelation’s PSNR indices of the

resized speckle image by different scale factors are shown in
Fig. 3(e), in which the scale factor of 0.3 leads to the highest
PSNR index. Consequently, experimental results with a scale
factor of 0.3 achieve high-quality reconstructions, as shown in
Fig. 2. In fact, in our experiments the reconstructed results at
a scale factor of 0.2 or 0.4 are satisfactory as well, which implies
that the proposed method is robust for the scale factor and has
great flexibility.

Fig. 2. Experiment results of non-iris SSCI at a scale factor of 0.3. (a1)–
(a4) Raw speckle images of different objects; (b1)–(b4) resized speckle images
of (a1)–(a4); (c1)–(c4) autocorrelations of (b1)–(b4); (d1)–(d4) images recon-
structed from (c1)–(c4) through phase-retrieval algorithm; (e1)–(e4) corre-
sponding original objects. Scale bars, 1 mm.

Fig. 3. Logarithmic speckle autocorrelation and the normalized power spec-
trum at different scale factors s. (a1) Autocorrelation of the original object,
i.e., the ideal autocorrelation; (b1) power spectrum generated from (a1);
(a2)–(a5) speckle autocorrelations at different scale factors 0.1, 0.4, 0.7,
and 1; (b2)–(b5) power spectrum from (a2)–(a5), respectively; (c1)–(c5) corre-
sponding reconstructed results for (b1)–(b5) through Ping-pong algorithm;
(d) normalized frequency spectra of the center rows of (b1)–(b5) (positive
frequencies are shown); (e) quantitative evaluation of speckle autocorrela-
tions using PSNR at different scale factors. Scale bars, 1 mm.
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To estimate the suitable scale factor s for a non-iris SSCI sys-
tem, the relationship between the pixel size and the mean radius
of the speckle grains for successful reconstructions was analyzed.
The equivalent pixel size after resizing by s can be represented by
Δx 0 = Δx=s, in whichΔx is the original size of the detector pixel,
while the speckle grains’ mean radius δ̄ is determined by
δ̄ = 1.22λv=D, according to the statistical optics theories[13].
Rather than satisfying the condition that the mean diameter
of speckle grains needs to be at least twice as large as the detec-
tor’s pixel size, i.e., Δx=δ̄ ≤ 1, as mentioned in Ref. [7], herein,
we found that in the case of Δx=δ̄ > 1, the SNR of the speckle
autocorrelation can be significantly improved and lead to suc-
cessful reconstruction (as shown in Figs. 2 and 3) by introducing
an additional resizing procedure at a suitable scale factor s.
To provide an appropriate scale factor s for an arbitrary non-

iris SSCI system, we conducted a series of non-iris SSCI experi-
ments with various detectors of different pixel sizes and various
diffusers, and analyzed the statistics law of the relationship
between the pixel size and the mean radius of the speckle grains
for successful reconstructions. We found that the speckle auto-
correlation’s improvement depends on the ratio of the equiva-
lent pixel size after resizing and the mean speckle radius,
i.e., C = Δx 0=δ̄. Furthermore, when C was set to 6 by adjusting
s, the speckle autocorrelation’s improvement turned out to be
the most significant and led to the best reconstructions.
WhenC was in the range of 5 to 7, the reconstructed results were
satisfactory as well, which implies that the proposed method
shows a good robustness for s or C.
In a word, for an arbitrary non-iris SSCI system, one can esti-

mate the appropriate scale factor s as follows:

s =
1
C

Δx
1.22λv=D

: �1�

C represents the ratio of the resized pixel size and the mean
speckle radius, whose best empirical value is 6; due to its robust-
ness, when C ranges from 5 to 7, successful reconstructions can
be realized as well.

4. Verification Experiment and Further Discussion

To verify this conclusion, we performed a series of experiments
with detectors of different pixel sizes, including Dhyana 400BSI
(pixel size 6.5 μm, 2048 pixels × 2048 pixels) and Dhyana 95V2
(pixel size 11 μm, 2048 pixels × 2048 pixels). The experimental
results are shown in Fig. 4, where the diffuser is Thorlabs
DG20-220-MD, with a diameter of 5 cm. In Fig. 4, all the scale
factors s were calculated by Eq. (1) under the condition of C = 6
and then rounded to multiples of 0.1 due to its robustness.
Despite the poor quality of all the raw non-iris speckle images,
by estimating the scale factor s by Eq. (1) and then resizing the
speckle images by this s, high-quality reconstructions can be
achieved under the conditions of different detector pixel sizes
and various image distances v, as shown in Fig. 4. Note that

in our calculations, s is simply set to 1 when its calculated value
is larger than 1.
In addition, we tested the influence of diffuser surface rough-

ness on the appropriate scale factor s. As described in Ref. [13],
when the characteristic size of the diffuser’s surface roughness is
much larger than the wavelength, the speckle size will be inde-
pendent of the diffuser’s surface roughness. Here, we conducted
a series of experiments with diffusers of different surface rough-
nesses, including 45 μm (DG20-120-MD, Thorlabs), 36 μm
(DG20-220-MD, Thorlabs), and 16 μm (DG20-600-MD,
Thorlabs)[20], and the results demonstrate that the appropriate
scale factor is invariant with the surface roughness of the
diffuser.
More importantly, instead of digital resizing after image cap-

ture, the resizing procedure actually can be performed in the
capture and storage process by on-chip pixel binning, which will
further reduce the read-out noise and increase the frame rate sig-
nificantly. Pixel binning is a technique that combines data from
nearby sensor photo sites prior to analog-to-digital conversion
and read-out in the imaging and storage process. The function of
pixel binning is similar to digital resizing but can realize better
SNR and a higher frame rate[27]. Herein, we conducted a series of
experiments to compare the performance of pixel binning with
that of digital resizing. The experiment setup is the same as in
Fig. 1(a).
First, the scale factor swas calculated by Eq. (1) under the con-

dition of C = 6; then, instead of digital resizing after capture,
pixel binning of � 1s� × �1s� was performed in the capture and stor-
age process, i.e., � 1s� × �1s� individual pixels nearby were binned

Fig. 4. Experimental results with another two cameras and new parameters.
(a1)–(a4) Autocorrelations of the resized image by the factor of s at different
distances v; (b1)–(b4) images reconstructed from (a1)–(a4) through phase-
retrieval algorithm; (c1)–(c4), (d1)–(d4) as in (a1)–(a4), (b1)–(b4) but for different
cameras and s. Scale bars, 1 mm.
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and read out as one large pixel, in which � · � rounds a number to
the nearest integer. In these experiments, the distance u was set
to 35 cm to satisfy the memory-effect range, and the scale factors
were 0.5, 0.3, and 0.25, respectively; their corresponding binned
pixel numbers were thereby 2 × 2, 3 × 3, and 4 × 4. Because the
resizing process had been completed in the acquisition process,
the objects were reconstructed directly from the autocorrelation
of the binned speckle image by phase-retrieval algorithm, as
shown in Figs. 5(e1)–5(e3). Pixel binning can remarkably
improve the frame rate of SSCI, as expected. For comparison,
the results of digital resizing are listed in Figs. 5(c1)–5(c3).
It is worth noting that the most suitable scale factor for a non-

iris SSCI system depends on the system parameters, such as the
wavelength, the size of the pixels, the distance between the cam-
era and the diffuser, and the diameter of illuminated area of the
diffuser. Thus, one can estimate the appropriate scale factor for
resizing by Eq. (1) based on the system parameters above; or
more simply, one can perform resizing on the raw speckle image
by decreasing the scale factor from 1 to 0.1 in a specific step to
find the suitable value that achieves the best reconstruction. In
addition, the experimental results imply that the object informa-
tion is contained in the spatial distribution of the speckle grains
rather than in each single speckle grain; therefore, to achieve
successful SSCI reconstruction, the sizes of speckle grains in
the captured speckle images in fact do not need to satisfy the
Shannon–Nyquist sampling.

5. Conclusion

In summary, we propose a non-iris speckle-correlation
imaging method. The absence of the iris can increase light flux,
improve noncooperation and flexibility, and reduce hardware

requirements for an SSCI system; however, it will lead to
reconstruction distortion or even failure. By introducing a spe-
cial resizing process on the non-iris speckle images, the SNR and
the structural similarity of the speckle pattern’s autocorrelation
compared with the ideal autocorrelation are significantly
improved, which can help to achieve successful reconstructions.
In addition, we put forward the approach to estimate the most
appropriate scale factor for a non-iris SSCI system. The exper-
imental results demonstrate that our method can achieve high-
quality noncooperative speckle-correlation imaging by digital
resizing or on-chip pixel binning; the latter can remarkably
improve the frame rate of SSCI. The proposed method will ben-
efit the noncooperative high-frame-rate speckle-correlation im-
aging, as well as scattering imaging for dynamic objects hidden
behind opaque barriers.

Acknowledgement

This work was supported by the National Natural Science
Foundation of China (No. 62005317), the National Key R&D
Program of China (No. 2020YFA0713504), and the Natural
Science Foundation of Hunan Province, China
(No. 2021JJ40695).

†These authors contributed equally to this work.

References
1. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque

strongly scattering media,” Opt. Lett. 32, 2309 (2007).
2. A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in

space and time for imaging and focusing in complex media,” Nature
Photon. 6, 283 (2012).

3. E. Edrei and G. Scarcelli, “Memory-effect based deconvolution microscopy
for super-resolution imaging through scattering media,” Sci. Rep. 6, 33558
(2016).

4. N. Antipa, G. Kuo, R. Heckel, B. Mildenhall, E. Bostan, R. Ng, and L. Waller,
“DiffuserCam: lensless single-exposure 3D imaging,” Optica 5, 1 (2018).

5. S. K. Sahoo, D. Tang, and C. Dang, “Single-shot multispectral imaging with a
monochromatic camera,” Optica 4, 1209 (2017).

6. J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and
A. P. Mosk, “Non-invasive imaging through opaque scattering layers,”
Nature 491, 232 (2012).

7. O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot im-
aging through scattering layers and around corners via speckle correlations,”
Nature Photon. 8, 784 (2014).

8. T. Wu, O. Katz, X. Shao, and S. Gigan, “Single-shot diffraction-limited im-
aging through scattering layers via bispectrum analysis,” Opt. Lett. 41, 5003
(2016).

9. M. Cua, E. Zhou, and C. Yang, “Imaging moving targets through scattering
media,” Opt. Express 25, 3935 (2017).

10. X. Li, J. A. Greenberg, and M. E. Gehm, “Single-shot multispectral imaging
through a thin scatterer,” Optica 6, 864 (2019).

11. W. Li, T. Xi, S. He, L. Liu, J. Liu, F. Liu, B. Wang, S. Wei, W. Liang, Z. Fan,
Y. Sun, Y.Wang, and X. Shao, “Single-shot imaging through scatteringmedia
under strong ambient light interference,” Opt. Lett. 46, 4538 (2021).

12. D.Wang, S. K. Sahoo, X. Zhu, G. Adamo, and C. Dang, “Non-invasive super-
resolution imaging through dynamic scattering media,” Nat. Commun. 12,
3150 (2021).

13. J. Chen and X. Su, Principle and Application of Optical Information
Technology (Higher Education Press, 2009).

Fig. 5. Comparison of experimental results by digital resizing and pixel bin-
ning. (a1)–(a3) Raw speckle images of symbol “5” at different distances v: (a1)
v = 10 cm; (a2) v = 15 cm; (a3) v = 20 cm; (b1)–(b3) resized speckle images
(central part is shown) of (a1)–(a3) by different s (0.5, 0.3, 0.25); (c1)–
(c3) objects reconstructed from (b1)–(b3) through phase-retrieval algorithm;
(d1)–(d3) binned (2 × 2, 3 × 3, 4 × 4) speckle images at the same distance v as
in (a1)–(a3); (e1)–(e3) objects reconstructed from (d1)–(d3) through phase-
retrieval algorithm. Scale bars, 1 mm.

Chinese Optics Letters Vol. 21, No. 3 | March 2023

031101-5

https://doi.org/10.1364/OL.32.002309
https://doi.org/10.1038/nphoton.2012.88
https://doi.org/10.1038/nphoton.2012.88
https://doi.org/10.1038/srep33558
https://doi.org/10.1364/OPTICA.5.000001
https://doi.org/10.1364/OPTICA.4.001209
https://doi.org/10.1038/nature11578
https://doi.org/10.1038/nphoton.2014.189
https://doi.org/10.1364/OL.41.005003
https://doi.org/10.1364/OE.25.003935
https://doi.org/10.1364/OPTICA.6.000864
https://doi.org/10.1364/OL.438017
https://doi.org/10.1038/s41467-021-23421-4


14. X. Wang, H. Liu, M. Chen, Z. Liu, and S. Han, “Imaging through dynamic
scattering media with stitched speckle patterns,” Chin. Opt. Lett. 18, 042604
(2020).

15. H. Li, T. Wu, J. Liu, C. Gong, and X. Shao, “Simulation and experimental
verification for imaging of gray-scale objects through scattering layers,”
Appl. Opt. 55, 9731 (2016).

16. C. Guo, J. Liu, T. Wu, L. Zhu, and X. Shao, “Tracking moving targets
behind a scattering medium via speckle correlation,” Appl. Opt. 57, 905
(2018).

17. L. Zhu, Y. Wu, J. Liu, T. Wu, L. Liu, and X. Shao, “Color imaging through
scatteringmedia based on phase retrieval with triple correlation,”Opt. Lasers
Eng. 124, 105796 (2020).

18. S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of
coherent wave transmission through disordered media,” Phys. Rev. Lett. 61,
834 (1988).

19. I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation
of optical waves through disordered media,” Phys. Rev. Lett. 61, 2328
(1988).

20. P. R. Seem, J. D. Buchanan, and R. P. Cowburn, “Impact of surface roughness
on laser surface authentication signatures under linear and rotational dis-
placements,” Opt. Lett. 34, 3175 (2009).

21. M. Hofer, C. Soeller, S. Brasselet, and J. Bertolotti, “Wide field fluorescence
epi-microscopy behind a scattering medium enabled by speckle correla-
tions,” Opt. Express 26, 9866 (2018).

22. J. R. Fienup, “Reconstruction of an object from the modulus of its Fourier
transform,” Opt. Lett. 3, 27 (1978).

23. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758
(1982).

24. S. Fadnavis, “Image interpolation techniques in digital image processing: an
overview,” Int. J. Eng. Res. Appl. 4, 5 (2014).

25. R. Keys, “Cubic convolution interpolation for digital image processing,” IEEE
Trans. Acoust., Speech, Signal Process. 29, 1153 (1981).

26. P. Shirley, Fundamentals of Computer Graphics (CRC Press, 2009).
27. J. Farrell, M. Okincha, M. Parmar, and B. Wandell, “Using visible SNR

(vSNR) to compare the image quality of pixel binning and digital resizing,”
Proc. SPIE 7537, 75370C (2010).

Vol. 21, No. 3 | March 2023 Chinese Optics Letters

031101-6

https://doi.org/10.3788/COL202018.042604
https://doi.org/10.1364/AO.55.009731
https://doi.org/10.1364/AO.57.000905
https://doi.org/10.1016/j.optlaseng.2019.105796
https://doi.org/10.1016/j.optlaseng.2019.105796
https://doi.org/10.1103/PhysRevLett.61.834
https://doi.org/10.1103/PhysRevLett.61.2328
https://doi.org/10.1364/OL.34.003175
https://doi.org/10.1364/OE.26.009866
https://doi.org/10.1364/OL.3.000027
https://doi.org/10.1364/AO.21.002758
https://doi.org/10.1109/TASSP.1981.1163711
https://doi.org/10.1109/TASSP.1981.1163711

	Convenient noncooperative speckle-correlation imaging method
	1. Introduction
	2. Method and Experiment
	3. Discussion
	4. Verification Experiment and Further Discussion
	5. Conclusion
	Acknowledgement
	References


