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In this paper, an artificial-intelligence-based fiber communication receiver model is put forward. With the multi-head atten-
tion mechanism it contains, this model can extract crucial patterns and map the transmitted signals into the bit stream.
Once appropriately trained, it can obtain the ability to restore the information from the signals whose transmission dis-
tances range from 0 to 100 km, signal-to-noise ratios range from 0 to 20 dB, modulation formats range from OOK to PAM4,
and symbol rates range from 10 to 40 GBaud. The validity of the model is numerically demonstrated via MATLAB and Pytorch
scenarios and compared with traditional communication receivers.
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1. Introduction

In optical fiber communications, receiver design is a crucial and
interdisciplinary work. Conventional receivers are functioned to
map the transmitted signals from a photodetector (PD) into the
bit stream[1]. Though they can decode the bit stream transmit-
ted, the algorithms inside the conventional receiver models are
distributed and dispersed. For example, both aims and realiza-
tion ways of digital dispersion compensation algorithms in fiber
dispersion compensation[2] modules and Viterbi-related decod-
ing algorithms[3] in decoding modules are totally different. In
addition, compatibility of signals between the modules should
be taken into consideration due to the dispersed algorithms in
each signal. This lack of commonality and universality may
result in the redesign and reconfiguration of receiver modules
in different optical communication systems.
Thanks to the rapid development of integrated circuit

manufacturing and distributed computing hierarchical designs,
artificial intelligence (AI) technology has been surging and
developing at an unprecedented speed in recent years. Not only
have the traditional algorithms such as decision tree[4], support
vector machine (SVM)[5], and K-nearest neighbors (KNN)[6],
been thoroughly researched and applied in the tasks of language
translation, loan evaluation[7], etc., but also novelty models like
artificial neural networks (ANNs) of different kinds
have become subjects of intensive research[8]. Up until now,

various neural networks such as convolution neural networks
(CNNs)[9–11], recurrent neural networks (RNNs)[12], and long-
short term memory modules (LSTMs) have been put forward.
Due to their structural differences, CNNs have great advantages
in the fields of pattern recognition[10] and image processing[11],
while RNNs and LSTMs have been widely adapted in natural
language processing (NLP) and time series processing. In recent
years, various neural networks or other AI models have been
applied in the fields of photonics and optics[13]. There has
been an increasing focus on optical communications, ANNs
and CNNs in recognition of modulation formats[14], eye dia-
grams[15], and so on. Other models may have great appli-
cations in improving the quality of optical communication
systems[16–18]. The technology of neural networks has been inte-
grated with the technology of optoelectronics at an unprec-
edented speed[19–22].
Transformers were put forward in 2017 and have been widely

and deeply researched in recent years[23]. Due to their multi-
head attention mechanisms, they show great advantages in
extracting different crucial information from long time series
over other models like RNNs by solving the memory decay
mechanisms. Therefore, we put forward the AI-based fiber
receiver model, which adopts the multi-head attention mecha-
nism and the corresponding data collection and model training
strategies. This model, once appropriately trained through data,
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can have a relatively greater ability of extracting and compensat-
ing distortions. Therefore, it can de-overlap the signals well and
map them into the bit stream, as the conventional receivers do.
Thanks to the great generalization of deep neural networks, the
model can have relatively great generalization on transmission
distances from 0 to 100 km. Performances of this model are
numerically demonstrated and compared with conventional
receivers.

2. Principles and Simulation Setups

As is shown in Fig. 1, the whole communication scenario con-
sists of information source, a laser, an intensity modulator, a
fiber transmission link, and a receiver. The AI-based receiver
model functions as a traditional receiver that can transfer the
transmitted signals into the bit stream. Therefore, the inputs
should be transmitted signals that contain fiber dispersion, non-
linear effects, and noise, while the outputs are the bit stream.
Since in actual communication systems, mapping relations
between bit information and communication symbols are
one-by-one once fixed, communication symbols are utilized
in the training process and bit information is utilized in the
bit error calculation of the testing process.
In total, the AI-based receiver model consists of two different

modules, including the transformer encoder structure and the
feature fusion structure. Model design should originate from
the conventional receiver, though most deep neural networks
lack an explanation. The transformer encoder module can be
viewed as the primary de-overlap module to recover the trans-
mitted signals from intensive intersymbol interference (ISI)
caused by fiber dispersion and nonlinear effects compensations
that may occur during the signal propagation in the fiber. The
subsequent feature fusion structure processes the data contain-
ing features extracted from the previous transformer encoder

structure to better map the feature information into the pre-
dicted symbols as the model’s outputs. Further bit streams
can be restored by adopting the decision rules like conventional
receivers.
For the transformer encoder module, multi-head mecha-

nisms are applied. As can be seen from Fig. 1, as the input trans-
mitted signals come into the first module, multi-head attention
mechanisms are adopted to extract the information of the over-
lapped and distorted signals. Since multi-head mechanisms
adopt quarry, key, and value matrices to conduct convolution
with signals, they will show a higher ability in extracting and
storing multiple information bits over a long time duration[23].
The residue structure is the second important structure adopted
in the first transformer encoder module, which is shown as the
residue branches and add and norm layers[24]. These residue
branches replicate the data and allow them to pass directly
through several layers to merge with the processed ones in
the subsequent layer before activation in order to prevent the
potential gradient vanishing problem in training procedures.
For the feature fusion module, several layers of neurons and

activation functions work together to further process the fea-
tures from primarily the de-overlapped signals that were previ-
ously extracted by the transformer encoder structure to better
restore the transmitted information. Taking into account both
computing resources and task requirements, there are four
layers, including two hidden layers with each containing 512,
1024, 1024, and 32 neurons in this module. Nonlinear activation
functions, as one of the hyperparameters in this structure, are
chosen to be rectified linear unit (ReLU) in order to avoid the
slow weights update during the later parts of the learning
procedures.
After that, the decision rules, which are closely related to the

bit-symbol mapping in the transmitter parts of optical commu-
nication systems, can be adopted to further turn the predicted
symbols as the outputs of the AI-based receiver model into
the bit streams.
Since the AI-based receiver model learns from large amounts

of data, establishment and configurations of the data set are of
great significance as well. The whole data set consists of training
data, validation data, and testing data. In each data sample, a
total of four attributes are included, which refer to modulation
format (MF), symbol rate (Rs), transmission distance (D), and
signal-to-noise ratio (SNR). These four attributes are called a
quadruple and can be denoted as (MF, Rs, D, and SNR). Once
the value of the quadruple is determined, the data collection sys-
tems, whose important properties are listed in Table 1, are com-
pletely chosen. In this paper, MF ranges from on–off keying
(OOK) to 4-pulse amplitude modulation (PAM4). Rs ranges
from 10 GBaud and 20 GBaud to 40 GBaud. D ranges from 1
to 100 km, with an interval of 1 km in both the training and val-
idation data sets, while D ranges from 0.5 to 99.5 km, with an
interval of 1 km in the testing data set. SNR ranges from 0 to
16 dB and +inf in OOK, while SNR ranges from 0 to 20 dB
and +inf in PAM4. The sampling rate is 8 times higher than that
of the symbol rate. The model will then be trained separately for
different MF, Rs, and SNR by using data originated from signals

Fig. 1. Structure of the communication scenario, the traditional receiver, and
the AI-based receiver model containing multi-head attention mechanism.

Vol. 21, No. 3 | March 2023 Chinese Optics Letters

030602-2



transmitted from different distances, so that the model is able to
obtain relatively good generalization ability over transmission
differences.
All data utilized for themodel’s training and testing follow the

format described in Fig. 2. In general, the input data are made up
of the sampling points from the transmitted signals, while the
targets are made up of the correct symbol values. The notation
‘s’ in this figure represents all the sampling points from the wave-
forms corresponding to each symbol, while it represents the
symbol value in the targets. For each data sample, it contains
both input and target. The inputs contain three dimensions,
which are shown on the left side in Fig. 2. The first dimension
is the index of symbols, each containing 16 values, with the for-
mer 8 values representing the real parts of the 8 sampled points
for each symbol and the latter 8 values representing the

imaginary parts, meaning k equals 8 in Fig. 2. The second index
is the index of sampling points in one data sample. Here, there
are altogether 4096 sampling points from 32 symbols that form
one data sample, meaning n equals 32 in Fig. 2. The third dimen-
sion is the data sample index in one batch for the model’s train-
ing and testing. In total, 128 data samples exist in one batch,
meaning m equals 128. In contrast, the data of the targets have
two dimensions, a symbol index and a group index, whose
meaning is the same as inputs. As for the scale of the data in
the whole data set, it varies with respect to the training data
set, the validation data set, and the testing data set.
As for the training of this model, the loss function is chosen to

be normalized mean square error (NMSE), and the optimization
method is determined to be adaptive momentum stochastic gra-
dient descend method (ADAM)[25], with the batch size equaling
128. Figure 3 shows one example of the training procedure of the
model with respect to quadruple (MF = PAM4, D = 60 km,
Rs = 10GBaud, SNR =� inf ). Judging from the convergence
curve, the NMSE loss decreases as the epoch increases. The slope
of the curve changes from steep to horizontal, which indicates
the converging results. Fluctuations may exist in the curve,
and this implies the unflatness of the surface of the loss. In addi-
tion, from Figs. 3(b)–3(k), the outputs distribution progressively
reaches the targeted symbol values as the epoch goes.

3. Results and Discussions

In order to test the performances of the AI-based receiver model,
BER-SNR diagrams are utilized, which have been widely used in
applications in conventional communication receivers. SNR
evaluates the relative signal power with respect to noise power,
while BER evaluates the number of the wrongly detected.

Table 1. Important Parameters for the Model, Data Set, and Numerical Demonstration.

Parameter Value Parameter Value

Modulation format OOK/PAM Symbol rate 10/20/40 GBaud

Sampling rate 8 × symbol rate Transmission distance 0–100 km

Scale of training data set 31,744 symbols per distance SNR 0–16 dB and +inf for OOK; 0–20 dB and +inf for PAM

Scale of validation data set 1600 symbols per distance Scale of test data set 523,264 symbols per distance

Configurations for training set 1–100 km, interval of 1 km Configurations for test set 0.5–99.5 km, interval of 1 km

Configurations for validation set 1–100 km, interval of 1 km Central wavelength 1550 nm

Optimizer ADAM Batch size 4096 symbols

Loss function NMSE Valuation function Bit error rate

Power of laser source 0 dBm Modulator Intensity modulator

Fiber in transmission link SSMF (G.652) Responsivity of PD 1 A/W

Dispersion 16.75 ps·nm−1·km−1 Effective area 80 μm2

Fig. 2. Data formats and collection configurations.
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Baseline or reference results are obtained from conventional
receivers with hard detection. In contrast, these conventional
receivers contain both chronic dispersion compensation and
nonlinearity equalization algorithms or devices. Without losing
generality, the traditional receivers compensate for fiber
dispersion of the 50.5 km transmission before bit detection.
In the real transmission circumstances, this compensation
method can either be dispersion compensation fiber (DCF),
with the total dispersion value equaling 845.875 ps/nm in the
optical domain, or the corresponding finite inpulse response
(FIR) filter in the electronic domain. According to the theory
of telecommunications, noise suppression algorithms or devices
are usually adopted in conventional receivers before bit detec-
tion[1]. These can effectively improve the detection accuracy.
Please note that the SNR values used in Fig. 4 refer to the
SNR before the noise suppression algorithms filters in order
to conduct fair comparisons, since the AI-based receiver model
conducts detection by utilizing the signals without the processes
of noise suppression algorithms. Here, two conventional
receiver models, one with noise suppression algorithms and
the other without noise suppression algorithms, are both
adopted as the baseline models in comparison with the AI-based
receiver model.
All results shown as the formats of SNR-BER diagrams are

depicted in Fig. 4. For the quadruple described above, MF
and Rs are plotted separately in each subfigure, while SNR
and D are depicted as two axes to form the horizontal plane
of each subfigure, respectively. The color turns yellow or red
when BER increases, while turning blue or purple as BER
decreases. For the relatively small BER (which is less than
10−6), a dark purple color is utilized to cover this region.
The analysis of these BER-SNR diagrams can center on how

the quadruple attributes affect the performance of the model. By
comparing the diagrams in Figs. 4(a3)–4(c3) with Figs. 4(d3)–
4(f3), the AI-based model performs better in OOK signals than
in PAM4 signals with the same configuration of the other three
attributes in the quadruple. First, the waveform complexity of
the PAM4 is higher than that of the OOK. Second, though with

the same dispersion and nonlinearity for the same distance,
PAM4 signals experience more intense distortions. Third, for
PAM4 signals, the Hamming decision distance between each
set of two neighboring symbols is less than that of the OOK.
By comparing Fig. 4(a3) with Figs. 4(b3) and 4(c3) or Fig. 4(d3)
with Figs. 4(e3) and 4(f3), one can clearly see how the symbol
rate affects the performance of the AI-based fiber model.
With the increase of symbol rate, the difficulty ofmapping trans-
mitted signals into the targeted bit stream also increases.
In contrast with the modulation format and symbol rate,

which have relatively uniform or monotonal effects on the per-
formances of the model, the last two attributes, SNR and dis-
tance, may cause rather complicated effects. As for the SNR,
the overall rule is that the higher the SNR, the better the model
predicts. Unlike fiber dispersion or other nonlinear effects dur-
ing fiber propagation, which can be compensated for, noise is
irreversible and cannot be completely removed. It will cause
the turbulence on signals, whichmay trigger the AI-basedmodel
to misclassify as long as the turbulence is large enough and can
even cause a dramatic decrease in the performance of the model.
From Fig. 4(b3), at a distance equaling around 80 km, the BER
ranges from 10−2 to 10−6 and from 0 to 20 dB. As for the trans-
mission distances, its effect should be the same for the specific
SNR, which means that the contour lines in Fig. 4 should be
horizontal under ideal circumstances, in which the distance gen-
eralization ability equals infinity. However, even with relatively
good distance generalization, the unflatness also exists and can-
not be ignored, especially for a higher symbol rate and higher-
order modulation formats. As can be seen from Figs. 4(a3) and
4(d3), the BER contour line is almost horizontal during the
transmission distances when the SNR is higher and the symbol
rate is relatively lower. This indicates that the AI-based receiver
model shows relatively better distance generalization for those
signals that contain less noise and are transmitted at a relatively
lower symbol rate. However, with the increasing of either noise
power or symbol rate, the contour lines tend to lose their hori-
zontal shapes and gradually become irregular curves, which
indicates the relatively poorer distance generalization for the

Fig. 3. Performance of convergence of AI-based receiver model through training.
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model under these circumstances. This is because either a high
level of noise or symbol rates may increase both uncertainty and
distortion differences over the signals transmitted at different
distances. Hence, it will be more difficult for the model to

maintain the same distance generalization ability in cases where
both noise power and symbol rate are lower.
The prediction accuracy and distance generalization ability of

the AI-based receiver model can be illustrated more vividly and

(a1) MF=OOK, Rs=10GBaud -conventional 
receiver without noise suppression algorithms

(a2) MF=OOK, Rs=10GBaud -conventional 
receiver with noise suppression algorithms

(a3) MF=OOK, Rs=10GBaud -AI-based 
receiver

(b1) MF=OOK, Rs=20GBaud -conventional 
receiver without noise suppression algorithms

(b2) MF=OOK, Rs=20GBaud -conventional 
receiver with noise suppression algorithms

(b3) MF=OOK, Rs=20GBaud -AI-based 
receiver

(c1) MF=OOK, Rs=40GBaud -conventional 
receiver without noise suppression algorithms

(c2) MF=OOK, Rs=40GBaud -conventional 
receiver with noise suppression algorithms

(c3) MF=OOK, Rs=40GBaud -AI-based 
receiver

(d1) MF=PAM4, Rs=10GBaud -conventional 
receiver without noise suppression algorithms

(d2) MF=PAM4, Rs=10GBaud -conventional 
receiver with noise suppression algorithms

(d3) MF=PAM4, Rs=10GBaud -AI-based 
receiver

(e1) MF=PAM4, Rs=20GBaud -conventional 
receiver without noise suppression algorithms

(e2) MF=PAM4, Rs=20GBaud -conventional 
receiver with noise suppression algorithms

(e3) MF=PAM4, Rs=20GBaud -AI-based 
receiver

(f1) MF=PAM4, Rs=40GBaud -conventional 
receiver without noise suppression algorithms

(f2) MF=PAM4, Rs=40GBaud -conventional 
receiver with noise suppression algorithms

(f3) MF=PAM4, Rs=40GBaud -AI-based 
receiver

Fig. 4. BER-SNR diagram of the universal receiver model.
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precisely as compared with the traditional receiver model by
comparing the subfigures in the third column with the first
and second columns. As for the prediction accuracy, the overall
performance of the AI-based receiver model is better, especially
for lower BER cases. From Fig. 4(a3), the BER of the AI-based
model is around 10−3 for most transmission distances, while the
BER of the conventional model with noise suppression algo-
rithms is 10−1 when SNR equals 0 dB, the conventional model
without noise suppression algorithms. However, this BER gain
decreases when the bit rate becomes higher, and the modulation
format turns out to be more sophisticated, since the fitting dif-
ficulties become higher for the AI-based receiver model.
Distance generalization can also be clearly seen by comparing
the shapes of the contour line. In detail, the contour lines show
more flatness with respect to transmission distances in the AI-
based receiver model than in the other two conventional models.
For conventional receivers, since compensation work is done for
50.5 km, its relatively distance-sensitive property makes the sys-
tem compensate more or less for other transmission distances,
which will cause the incomplete de-overlapping of the signals.
Therefore, the contour lines bend toward 50.5 km. In contrast,
due to the relatively better distance generalization ability, the
counter lines show more flatness with respect to the transmis-
sion distances in the AI-based receiver model. For higher symbol
rates and more sophisticated modulation formats, since more
intense distortions need to be compensated for, the counter lines
bend to a relatively greater extent in all the three models.
The time complexity of this model is related to the scale of its

learnable parameters, such as quarry, key, and value matrix rep-
resentations and the scale of weight matrices of the subsequent
layers. On average, models with a larger scale of learnable
parameters can obtain stronger regression abilities. Under this
circumstance, one effective way of either improving the predic-
tion precision of the model or extending the model’s applica-
tions on more sophisticated communication systems is to
enlarge its learnable parameters.

4. Conclusions

In conclusion, an AI-based receiver model containing a multi-
head attention mechanism was put forward in this paper.
Through appropriate training, it can progressively learn to
map the transmitted signals into the bit stream under different
transmission circumstances. Three main advantages can be
obtained. First, there is no need to design different compensa-
tion modules for fiber dispersion thanks to the model’s distance
generalization ability, which greatly improves the compatibility
of the receivers. Second, with the increase of the power of noise,
the prediction performance of the AI-based model does not fall
down much compared with conventional receivers. Third, this
model can be further applied as the basis for other transmission
quality evaluation models in short-distance fiber optical com-
munications. Future attention will be focused on further
improving the performance of the model and extending its
application into higher-order modulated signals.
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