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We propose an alternative approach to compensation of intermodal interactions in few-mode optical fibers by means of
digital backpropagation. Instead of solving the inverse generalized multimode nonlinear Schrödinger equation, we accom-
plish backpropagation of the multimode signals with help of their near-field intensity distributions captured by a camera.
We demonstrate that this task can successfully be handled by a deep neural network and provide a proof of concept by
training an autoencoder for backpropagation of six linearly polarized (LP) modes of a step-index fiber.
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1. Introduction

Multimode optical fibers (MMFs) have been actively studied
over the last decade due to their high potential for overcoming
the capacity crunch of optical communications with the technol-
ogy referred to as mode division multiplexing (MDM)[1].
Currently, the main limiting factor of the modern systems, rely-
ing on single-mode fibers (SMFs), is the intensity-dependent
Kerr nonlinearity. Coarsely, methods formitigation of nonlinear
effects in SMFs can be divided into two categories: optical[2–4]

and digital[5–12]. The former implies utilization of optical devices
and relevant physical effects for lowering the impact of nonli-
nearities, whereas the latter relies on digital signal processing
(DSP) and implementation of numerical algorithms, compen-
sating for the corresponding impairments.
Amongst DSP techniques, digital backpropagation[9–12]

(DBP) stands out, as it is also capable of treating all other deter-
ministic effects. The main idea behind DBP is solving the non-
linear Schrödinger equation[13] in the direction opposite to that
of the propagating light, which turns out to be possible due to the
prior knowledge on the transmitting system, i.e., fiber specifica-
tions. Typically, DBP is accomplished with the help of the split-
step Fourier method[13], which has to be tuned so that it can
operate within reasonable time boundaries without sacrificing
performance. This trade-off between computational effort and
accuracy has been recently canceled with the help of deep-neural
networks (DNNs)[14,15].
In addition to the challenges posed by SMFs, MMFs propose

their own, mostly originating from the nature of multimode
interactions that arise in media, such as intermodal cross-phase

modulation and four-wave mixing, Kerr and Raman nonlinear-
ities[16–22]. For instance, interchannel cross talk represents a
serious limitation for implementation of MMFs in telecommu-
nication[23–26] that is known to be successfully mitigated bymul-
timode DBP (MM-DBP)[25,26]. SSF is naturally extendable to the
multimode case, but its computational complexity scales as
O�N4� for N modes[27].
It is noteworthy that no standards for MDM receiver opera-

tion principles have been established yet, and not every spatial
demultiplexing scenario would be appropriate for conventional
MM-DBP schemes. In particular, demultiplexing may refer to
utilization of bulky optics[28], physical mode separation[29], or
implementation of numerical algorithms[30–33]. The latter is
mostly given by the technique referred to as intensity-only mode
decomposition (MD), which implies separation of modes, based
on the near-field intensity distributions of multimode signals
captured by a digital camera. This approach is deemed promis-
ing due to the simplicity of experimental realization of the
receiver part and its reconfigurability. However, existing MM-
DBP methods operate in terms of independent mode signals,
i.e., assuming that spatial demultiplexing is performed prior
to DBP, whereas modern cameras are not able to provide tem-
poral exposure of multimode signals, and, as a consequence,
knownMM-DBPmethods cannot be applied directly to the sys-
tems equipped with such a receiver.
To the best of our knowledge, DNNs have not been utilized as

a tool for MM-DBP, despite the fact that it is known that
they can capture nonlinear interactions in MMFs[34,35], and,
analogous to the case of SMFs, can provide fast and accurate cal-
culation. In this Letter, we turn the tables and apply MD
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algorithms after DNN-based MM-DBP, thus considering the
DBP problem for entangled multimode signals defined by the
near-field intensity speckles. With the help of numerical simu-
lations, we provide a proof of concept and demonstrate that such
a recovery of initial modal content can take place in the case of
severe nonlinearities. Additionally, we show that typical noise
levels of modern cameras do not have remarkable influence
on the performance of the proposed MM-DBP. We consider
the case of six linearly polarized (LP) modes, and following
the naming convention, we call our fiber a few-mode
fiber (FMF).

2. Methods

2.1. The main idea

The flow chart illustrating our approach is displayed in Fig. 1(a).
Given the output near-field intensity pattern, we want to recover
the modal content of the input multimode signal. We propose
utilizing two neural networks: one for MM-DBP and another
one for MD. Mode configurations at the fiber output are
arranged as multimode beam speckles that are fed to MM-DBP
DNN, which results in those at the fiber input. The final stage is
represented by MD-DNN, which provides modal content of the
initial multimode signal. In order to train the MM-DBP net-
work, we need pairs of input and output beam speckles that
require numerical simulation of multimode signal propagation.
Details on theMD-DNN architecture lie beyond the scope of the
current work, as this part is purely technical and can be given by
any other method[30,31]. In what follows, under MD-DNN, we
understand an appropriately trained vision transformer[33].

2.2. Nonlinear light propagation in FMFs

Given the complex electrical field modal envelope Ap�z, t� of the
mode p, pulse propagation in FMFs fulfills the generalized non-
linear multimode Schrödinger equation (GMMNLSE)[27,36],
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where β�p�n = ∂
nβ�p�=∂ωn refers to the nth-order dispersion coef-

ficient for the pth mode (limited by Nd),ℜ denotes the real part
of a complex number, n2 is the nonlinear index coefficient, ω0 is
the center frequency, SKplmn (S

R
plmn) is themodal overlap tensor for

the Kerr (Raman) term, hR is the Raman response of the fiber
medium, and f R ≃ 0.18 is the Raman contribution factor for
fused silica. In our simulations, we set Nd = 3.
For obtaining the training data, we generate random ampli-

tudes for Gaussian envelopes Ap�t� with p = 1, 2, : : : , 6 and

simulate multimode light propagation by solving Eq. (1) with
the help of the massively parallel algorithm (MPA)[27] on graph-
ics processing unit. Then the output intensity distribution at the
receiver is given by

I�x, y� =
����
XN
i=1

Aiφi�x, y�
����
2

=
XN
i, j=1

AiA
�
j φi�x, y�φj�x, y�, (2)

where φi�x, y� are normalized transverse mode eigenfunc-
tions[37] and N is the number of modes. The goal of MD-
DNN is inferring ReAi and ImAi from I�x, y�. Here, wemention
that the complex coefficients can be recovered up to their con-
jugation due to the fact that intensity is conjugation-invariant.
Another degree of freedom, namely, arbitrariness of the relative
phase shifts, is fixed by the constraint ImA0 = 0.
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Fig. 1. (a) Flow chart of the proposed method. A near-field beam speckle, cap-
tured at the fiber output, is fed to MM-DBP DNN, resulting in the recovered
input pattern. MD-DNN takes this input pattern and yields real and imaginary
parts of complex mode coefficients. (b) Schematic of the proposed MM-DBP
DNN. We use a residual neural network (ResNet) based autoencoder that
compresses information acquired from the speckles and maps it onto a vec-
tor from the latent feature space. The decoder maps it back to the speckle
space. Three middle blue blocks denote fully connected (FC) layers with 512,
1024, and 512 neurons, respectively. After each FC layer, we also place a drop-
out layer. BatchNorm stands for batch normalization. We use the rectified
linear unit (ReLu) as the activation function. (c), (d) Detailed structure of
the encoder and the decoder 64 × 32 × 32 basic blocks, respectively.
Those with other dimensions can be obtained analogously.
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It is worth noting that even MPA[27] is computationally
expensive and time-consuming, while the main goal of this work
is to prove consistency of the proposed MM-DBP approach.
Therefore, without loss of generality, we set simulation specifi-
cations so that the nonlinear interaction becomes colossal.
Consideration of such scenarios, which are probably unsuitable
for communication, allows us to observe severe interchannel
cross talk on shorter distances. Detailed simulation specifica-
tions can be found in Table 1.

2.3. The network

From the versatile pool of suitable DNN architectures, we opt for
the model given by a residual neural network (ResNet) based
autoencoder [see Figs. 1(b)–1(d)]. Input 64 × 64 images are
mapped by the encoder onto vectors from the latent feature
space, which are processed by three dense layers and trans-
formed to the output 64 × 64 pictures by the decoder.
We quantify the network’s reconstruction quality by two val-

ues. The first one is the correlation,

C=

����
RR

ΔItrue�x, y�ΔIrec�x, y�dxdy������������������������������������������������������������������������������RR
ΔI2true�x, y�dxdy ·

RR
ΔI2rec�x, y�dxdy

p
����, (3)

where ΔIj�x, y� = Ij�x, y� − Ī j�x, y�, and Ī j is the mean intensity
value, with j indexing either true or recovered patterns.
Final estimation of the network’s performance is given by the

mean squared error (MSE) between the genuine fReAi, ImAig
and those obtained by MD-DNN,

MSE =
1
N

XN
i=1

��ReAt
i − ReAr

i �2 � �ImAt
i − ImAr

i �2�, (4)

where t and r stand for “true” and “recovered,” respectively.
We train the network in two stages. At the first one, we use

150,000 image pairs and train our DNN for 100 epochs with
the AdamW optimizer[38]. The learning rate is set to 5 × 10−4,
which is halved every 20 epochs. The loss function is chosen as
MSE between two images. It turns out that after this stage, the
network’s output carries visually unnoticeable reconstruction
artifacts. In other words, despite high values of the correlation
between genuine input speckles and those resulting from
MM-DBP, there is high discrepancy between the corresponding

outputs of MD-DNN. These artifacts can be considered and
treated as noise. Therefore, the second stage is aimed at rectify-
ing this problem by transfer learning of the MM-DBP network
for an extra 50 epochs with another 40,000-data set by applying
the MD-DNN to ground truth and output speckles and calcu-
lating the loss function,

L =MSE� PSNRLoss�beamtrue, beamrec�, (5)

where PSNRLoss stands for peak signal-to-noise ratio (PSNR)
loss function, which is simply the negative value of PSNR calcu-
lated for the ground truth and the MM-DBP network’s output.
This maneuver grants substantial improvements in the MM-
DBP DNN performance.

3. Results and Discussion

We validate our MM-DBP model with an unfamiliar 1000-data
set of images. For each sample, we calculate the correlation and
MSE. It is noteworthy that calculation of these metrics implicitly
benchmarks our networks against MPA by formulation, since
this algorithm has been utilized for collecting the training sam-
ples. The resulting averaged metrics achieve decent values: C̄ =
0.992 and MSE = 2.3 × 10−4. Figure 2(a) demonstrates an MM-
DBP example. The left panel shows the fiber output beam

Table 1. Parameters Used in Simulations of Nonlinear Light Propagation in
FMFs.

Parameter Value Parameter Value

Total energy 10 nJ NA 0.2

Fiber radius 25 μm Wavelength 1550 nm

Fiber length 1 m N 6

tFWHM 0.1 ps Image size 64 × 64

(a)

(b)

(c)

Fig. 2. (a) Example of an output, initial, and recovered speckle, respectively, in
the absence of noise [see Eq. (6)]; (b) same patterns with receiver noise
included (SNR = 10 dB); (c) energy redistribution for each mode after having
propagated the fiber.
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speckle, whereas the middle and the right panels display the true
and the recovered input speckles, respectively. The resulting cor-
relation is C = 0.995. The impact of nonlinear interactions is
reflected in Fig. 2(c), where we demonstrate energy redistribu-
tion among the modes in the case of the sample propagation
shown in Fig. 2(a).
However, random receiver noise often plays a crucial role in

MD. There is always a trade-off between noise levels and the
number of decomposable modes[30,31]. Therefore, investigation
of the noise influence on MM-DBP performance is of para-
mount importance. According to the most common way, such
noise can be modeled as additive white Gaussian noise[30],

Inoised�x, y� =max�0, Itrue�x, y� � N�0, σ��, (6)

where N�0, σ� is a normally distributed random matrix of an
appropriate size. We imply that intensities are normalized so
that for every speckle max�Itrue� = 1 holds.
Varying σ yields different noise levels that we quantify by the

signal-to-noise ratio (SNR). We put our MM-DBP network to
the test for SNR values lying between 10 and 90 dB. We follow
the same pipeline using the same validation 1000-data set. The
only difference is that inputs of the network are subjected to the
noise procedure according to Eq. (6). We analogously calculate
the quality metrics for each value of SNR. Figure 3 illustrates
the behavior of the averaged MSE between the decomposed
and original complex coefficients, as well as the average value
of the correlation coefficient. Slightly above SNR = 20 dB, one
can observe a threshold that defines the applicability of the
current network architecture trained on the noise-free data.
However, in some cases, the network performs well even
at 10 dB [see Fig. 2(b)]. Taking into account that modern cam-
eras provide SNR levels of 40–60 dB, our simulations reveal
high potential for a realistic implementation of the proposed
approach.
Herein, we proposed an alternative approach to the tedious

task of compensation of intermodal interactions in FMFs relying
only on the near-field intensity distribution obtained at the fiber
output. As a proof of concept, we provided a model trained for
DBP of six consequent LP modes propagating through a step-
index fiber in the strongly nonlinear regime. This number of

modes represents a typical value for the physically separable
channels used for MM-DBP. We have numerically shown that
this technique might be a decent alternative to the existing pipe-
line of nonlinearity compensation methods in the case of FMFs.
We hope that this principle of MM-DBP might be useful for
intensity-only receiver-based FMF communication systems.
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