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Topological photonic states have promising applications in slow light, photon sorting, and optical buffering. However, real-
izing such states in non-Hermitian systems has been challenging due to their complexity and elusive properties. In this
work, we have experimentally realized a topological rainbow in non-Hermitian photonic crystals by controlling loss in the
microwave frequency range for what we believe is the first time. We reveal that the lossy photonic crystal provides a
reliable platform for the study of non-Hermitian photonics, and loss is also taken as a degree of freedom to modulate
topological states, both theoretically and experimentally. This work opens a way for the construction of a non-
Hermitian photonic crystal platform, will greatly promote the development of topological photonic devices, and will lay
a foundation for the real-world applications.
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1. Introduction

Topological photonics, which combines photonics, geometric
topology, and condensed matter physics, provides a new and
robust platform to study the interactions between light and mat-
ter due to the protection of topology, and has triggered various
physical phenomena and prospective applications[1–7]. In recent
years, topological photonic devices have attracted intense atten-
tion due to their unique properties of unidirectional propagation
and immunity to disorders[8–12]. “Rainbows,” which can sepa-
rate and enable different frequencies of light to propagate and
stop at different positions accompanied by different group
velocities, have been realized in various optical systems[13–16].
Then the topology is introduced into the rainbow device to form
the topological rainbow device with the advantage of robustness,
which has been realized in various Hermitian systems[17–20].
Unfortunately, the Hermitian system is ideal and rare, since

many of the optical systems are non-Hermitian in the real world,

especially for most loss systems. Loss is ubiquitous—an inherent
characteristic ofmostmaterials. How to deal with and utilize loss
is vital in the development of topological photonic devices. The
non-Hermitian systems have many novel and rich physics that
remain to be explored and have broad application prospects in
the development of photonic devices[21–25]. However, most of
the non-Hermitian systems, to be described using non-
Hermitian operators, which have complex and elusive physics,
are difficult to study[26–32]. To date, it is still a great challenge to
realize the observation of topological rainbow in non-Hermitian
systems due to lack of experimental schemes.
In this work, we propose a method to realize the topological

rainbow in non-Hermitian photonic crystals (PCs). The topo-
logical photonic states are generated at the interface of two
PCs, where one PC is undeformed, and the other PC has a trans-
lational value of part of one lattice. Loss has been demonstrated
as an effective mean to tune the topological state of the different

Vol. 21, No. 12 | December 2023

© 2023 Chinese Optics Letters 123601-1 Chinese Optics Letters 21(12), 123601 (2023)

mailto:cuicuilu@bit.edu.cn
mailto:xiaoyonghu@pku.edu.cn
mailto:zhhang@suda.edu.cn
https://doi.org/10.3788/COL202321.123601


frequencies to propagate into different positions, which provides
a new degree of freedom to design topological rainbow devices.
In addition, loss can also directly contribute to construction of
topological photonic states accompanied by periodic transla-
tional parameters of lattices in non-Hermitian systems. Only
requiring a PC with bandgap, the realization of such a topologi-
cal rainbow in non-Hermitian systems is general and of great
convenience because no external magnetic field is needed, with
no limitations for symmetries and lattice types. As for experi-
mental verifications, the microwave PCs with finely tuned
graded tangential loss have been fabricated and assembled,
and the near-field measurements of the electric field have been
performed. Obvious topological rainbows have been observed in
non-Hermitian systems in an operation band range from 7.725
to 8.355 GHz. Different frequencies of topological photonic
states propagate and stop at different positions because of the
gradually decreasing group velocities. This work provides an
effective method to realize topological photonic devices in non-
Hermitian systems and will promote the practical applications
of topological states, especially for slowing light, photon buffers,
and broadband optical information processing.

2. Results

2.1. Construction and design of the topological rainbow

First, the basic idea of constructing the topological rainbow in a
non-Hermitian system is introduced. Take the simple square lat-
tice of PC as an example. A two-dimensional (2D) PC structure
with loss is proposed, as shown in Fig. 1(a), comprising square
lattices of dielectric cylinders (n = 2.4� nIi) embedded in the

air (n = 1). The imaginary part nIi of the refractive index repre-
sents the lossy nature of the dielectric materials. The topological
photonic states can be generated at the interface formed by an
undeformed lattice and its counterpart with a translational dis-
tance of ξ along the x direction. Our proposed topological pho-
tonic structure has the same translational distance ξ but different
nI for different rows, in which ξ is fixed at 0.5a and nI is set to be
from 0 to 1 along the y direction. Topological photonic states can
be modulated by loss to form a topological rainbow at the inter-
face of PCs, where states with different frequencies can propa-
gate and stop at different positions.
Here the Zak phase θ�Zak�m, ky , nI

�kx� is calculated to identify the
topological properties of structures. The Berry curvature of each
band is obtained by analyzing the numerically calculated eigen
electric field distributions of PCs using the finite-element
method (FEM). The eigenstate nm�kx , ky , nI� in the momentum
space of the mth band can be labeled by the Bloch wave vector
�kx, ky� and the imaginary part of the refractive index nI . For a
fixed ky, the link variable Um,ky , nI �kx� and the Zak phase

θ�Zak�m, ky , nI
�kx� of the band m can be calculated as[17,18,33–35]

Um,ky , nI �kx� =
hnm,ky , nI �kx�jnm,ky , nI �kx � δkx�i
jhnm,ky , nI �kx�jnm,ky , nI �kx � δkx�ij

, (1)

θ�Zak�m, ky , nI
�kx�

= −Im
�
ln

�Y
hUm,ky , nI �kx�jUm,ky , nI �kx � δkx�i

��
: (2)

Although the phases for the right and left eigenvectors are dif-
ferent in the non-Hermitian system, if we choose the same

Fig. 1. Geometric structure, bulk bands, Zak phase, and the interface states. (a) Non-Hermitian 2D PC structure with square lattices of dielectric column
(n = 2.4 + nIi) embedded in the air (n = 1), in which different rows of the dielectric materials have different loss factors nI. a is the lattice constant, and
the radius r is 0.27a. (b), (c) Real and imaginary parts of dispersion bands of the 2D PC in TM mode, respectively, and nI is 0.3. The inset is the corresponding
unit cell. (d) Calculated values of the Zak phase for the translational lattice at the right of the structure shown in (a), which shows the topological properties of our
proposed structure; (e) evolution of the Zak phase for the first bulk band as a function of loss factor nI; (f) dispersion curves of different super unit cells, as shown
in the inset. Each color curve corresponds to different loss factors nI.
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eigenvectors for the states at the same locations, it does not affect
the calculation results[35].
Taking the transverse magnetic (TM) mode for example,

whose electric field is along the z direction, the real and imagi-
nary parts of calculated dispersion relations of the unit cell are
shown in Figs. 1(b) and 1(c), respectively. For the bulk energy
bands under the bandgap, the calculated Zak phase of the trans-
lational lattice as a function of ky in the momentum space is
shown in Fig. 1(d), where the Zak phase always take an integer
quantized value π when nI = 0, which verifies its topological
nature[33,34,36]. The Zak phase of this band as a function of nI
is also calculated, where the value of nI ranges from 0 to 4.5,
as shown in Fig. 1(e). The Zak phase is −π when the loss is 0
and evolves continuously along with the modulation of loss
due to the breaking of chiral symmetry (the same phenomenon
is also stated in Ref. [35]). In the whole evolution process, it
always satisfies the topological property[33,35]. Therefore, our
proposed structure, which has the same translational distances
and different losses for different rows, is topologically satisfied in
the non-Hermitian systems.
We calculate the energy bands of the supercell, as shown in

Fig. 1(f), where the x direction is exerted by the scattering boun-
dary condition, and for the y direction it is the periodic boun-
dary condition. It is obvious that different loss can generate
different interface states with different frequencies, which is used
to form the topological rainbow. The group velocities of
the topological interface states can be used to understand
the underlying physics for the formation of the topological rain-
bow. More calculation details of group velocity are shown in

Supplementary Material Section 1[33]. The distributions of
group velocities of the interface states are plotted as a function
of frequency and the parameter nI in Fig. 2(a). The dark regions
are the areas without interface states, and in the bright region,
the interface states exist, where the color depth indicates the
magnitude of group velocities of the interface states. The green
dashed lines mark the boundaries of the three regions and are
zero group velocity lines. When nI changes, the frequency of
interface states with zero group velocity can also be changed,
and thus the topological rainbow is formed.
We thus can explore the topological rainbow in non-

Hermitian systems. Considering a PC with gradually increasing
loss distribution for different rows, the propagating topological
photonic states will be slowed down to stop at a certain position
where the corresponding group velocity of the topological state
along the interface is zero, where the waves eventually “stop”
there in principle. Figure 2(b) shows the electric field intensity
and the Poynting vector power flow distributions of the topo-
logical rainbow as functions of distance Y and frequency.
Figures 2(c) and 2(d) show the electric intensity and Poynting
vector power flow distributions along the interface between
undeformed and deformed structures, respectively, and the
topological states with different frequencies are stopped at dif-
ferent spatial positions along the propagation direction to form a
topological rainbow in the non-Hermitian PC. Due to the sim-
ilar role played by gain and loss in the Hamiltonian, it is feasible
that a similarly slow-light effect can also occur in a system with
gain in materials. We also calculate and discuss the linear
bandgap in the complex plane and find that the bandgap still

Fig. 2. Non-Hermitian topological rainbow in the interface of two kinds of PCs. (a) Group velocity contour as a function of nI and frequency; (b) magnitude of
electric field distributions of all interface states; Y represents the distance of any positions along the y direction, and the fluctuation of the curve shows the
magnitude of E. (c) |E| field distribution of the topological rainbow trapping phenomenon of nine topological states shown in (b); (d) Poynting vector power flow |S|
distribution of the topological rainbow trapping phenomenon.
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exists in a large range of loss, which ensures the feasibility of our
work (Supplementary Material Section 2).

2.2. Samples preparation and experimental verification

In the experiment, we construct composite structures composed
of dielectric material (alumina, with relative permittivity of 7)
surrounded by lossy material with different thicknesses. As
can be seen in Fig. 3(a), alumina cylinders of radius r =
3.75mm and height of 8 mm are arranged into square arrays
with lattice constant a = 13mm. The finite height sample is
sandwiched between two parallel metallic plates (see Section 4
for details), and this is a perfect platform to explore 2D TM
PC properties. Similar samples and experimental setups have
been used to realize various topological photonics proper-
ties[37–39], which further demonstrate the feasibility and reliabil-
ity of such a system. A photonic bandgap will open between 7.5
and 8.5 GHz for this 2D dielectric PC, and the Zak phase-
induced deterministic interface state appears in this common
bandgap if we assemble a 2D PC with its counterpart shifted by
half a lattice constant[37]. Electromagnetic interference (EMI)
shielding material (in dark blue) is used to surround the PC
structures to absorb unwanted scattering. Vertically, 10 arrays
each are considered to guarantee the confinement of interface
states. Though alumina is lossless at microwave frequencies,
we can wrap EMI shielding materials [black in Figs. 3(a) and
3(b)] of different thickness d, with a measured permittivity of
1.1� 0.4i in the frequency range of a common bandgap, to tune
loss locally in this 2D PC.

To visualize the non-Hermitian topological rainbow, given
the limitation of our translational stage, horizontally, a 30-layer
sample is prepared. We use the same wrapped PC structure for
every five layers, and the bottom part is unwrapped alumina cyl-
inders. The other thicknesses d of wrapping EMI shield materi-
als are 0.55, 1, 1.25, 1.45, and 1.75 mm, and d increases along the
forward direction of the y axis. Such core-shell structures with
increased wrapping thicknesses shall be considered as cylinders
with the increasing radii and imaginary part of permittivity, but
the decreasing real part of permittivity. The measured electric
field amplitude distributions jEj can be found in Fig. 3(d).
With an increase of wrapping thickness (increasing loss), as
in the distributions in Fig. 2(a), the frequency of zero group
velocity of interface state redshifts. Thus, the electromagnetic
fields incident from the bottom tend to stop “earlier” at higher
frequencies, as shown clearly in microwave experiments. We
also carried out brute force FEM simulations considering the
exact experimental setup [with results shown in Fig. 3(c)].
Not only can nearly identical field distributions be found, but
also frequencies between experimental and simulation results,
showing a nearly consistent topological rainbow. Time domain
calculations for different frequencies of topological states are
carried out (SupplementaryMaterial Section 3) and correspond-
ing fast Fourier transform (FFT) calculations are also performed,
which are in accordance to the results of the group velocities.
The robustness of the topological rainbow for square lattices

is verified by introducing dislocations into the PC structure. As
five different types of wrapped alumina cylinders are introduced,
and each cylinder duplicates for five layers in the experiments,

Fig. 3. Samples and experimental setup; calculated and measured topological rainbow for square lattices in non-Hermitian systems. (a), (b) Proposed exper-
imental structure consists of a square lattice PC array of wrapped alumina cylinders with a relative permittivity of 7. The thicknesses of lossy materials (sponges,
the measured permittivity is 1.1 + 0.4i) for each group increase gradually from bottom to top. (c), (d) Simulated and experimentally measured |E| of topological
rainbow in non-Hermitian systems.
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five different types of dislocations are introduced to our pro-
posed square lattice structures, as depicted in Fig. 4(a). In sim-
ulations, all these dislocation distributions have almost no
influence on the appearance of the topological rainbow. As
shown in Fig. 4(b), experimentally we only observe slight
electromagnetic field distribution differences compared to
Fig. 3(d). The experimental results prove that topological rain-
bow structures show great robustness for lattices of any type.
Loss normally means something bad in optical devices. What

if the loss can be used to control the property of optical devices?
Group velocity plays a major physical role in the topological
rainbow, and local loss can be used to tune the corresponding
group velocity. Combining these two factors, the loss can be used
to control the topological rainbow property. We consider three
different cases of wrapping thickness (0, 0.55, 1, 1.25, 1.45, and
1.75 mm; 0.55, 1, 1.25, 1.45, 1.75, and 2.25 mm; 1, 1.25, 1.45,
1.75, 2.25, and 2.5 mm). By rearranging the wrapping thickness
distributions, we can manipulate the position at which the light
stops. The induced topological state at the structure with wrap-
ping thickness of d = 1.45mm shall have zero group velocity at
8.13 GHz, while for a different wrapping thickness, the corre-
sponding group velocity shall be different. Thus, light stops
when propagating to that region with zero group velocity.
The topological photonic state of the same frequency can be
tuned to propagate to different positions when the loss is
changed, as shown in Fig. 5, which has verified the degree of free-
dom for tunability function of loss.

3. Conclusion

In conclusion, the topological rainbow has been observed in
non-Hermitian systems for what we believe is the first time.
The construction of topological photonic states has good univer-
sality, which can be realized easily only if the PC has a bandgap
and is not restricted by symmetries and lattice types. The intro-
duction of graded loss into materials, which is achieved by wrap-
ping the lossless dielectric cylinders with lossy materials of
different thicknesses, plays a key role in engineering the group
velocity of the topological photonic states. Obvious topological
rainbow phenomena have been observed in non-Hermitian sys-
tems in a broadband range from 7.725 to 8.355 GHz. The devices
allow topological photonic states with different frequencies to
propagate and stop at different spatial locations. This work pro-
vides an effective method to construct and modulate materials
with different loss and topological photonic states with multiple
frequencies in non-Hermitian systems, which will promote the
practical application of topological photonic devices in the
real world.

4. Methods

Theoretical calculations: The data of eigen electromagnetic
field distributions are calculated by COMSOLMultiphysics soft-
ware, and then the Zak phase is calculated by MATLAB soft-
ware. The bands of bulk states and interface states, as well as
the intensity distribution of the topological rainbow, are both
calculated by the FEM of COMSOL Multiphysics software.
Experimental measurements: With TM polarization where the
electric field is parallel to the cylinder axis explored, the sample is
contained inside a parallel-plate waveguide made with two large
flat metallic plates. The source antenna, the PC structures, and
EMI shielding materials are assembled on the bottom plate, and
the probing antenna is fixed through a hole on the top metallic
plate. Both the source and probing antenna are connected to our
Agilent E5071C vector network analyzer for data acquisition.
The bottom plate, along with the samples, is mounted on a com-
puter-controlled xy translational stage and thus the time har-
monic electric field distributions can be measured spatially
from point to point. The distance between the top metallic plate
and the bottom plate is fixed at 8.5 mm, which is much smaller
than half of the wavelength of the incident microwave
(∼7.5GHz, approximately 40 mm), and thus the electric field
is perpendicular to the metallic plates. This parallel metallic
waveguide system is adopted only to deduce the height of the
sample, and all the physics revealed theoretically for 2D TM
PCs remain unchanged.
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