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Realizing high-fidelity optical information transmission through a scattering medium is of vital importance in both science
and applications, such as short-range fiber communication and optical encryption. Theoretically, an input wavefront can be
reconstructed by inverting the transmission matrix of the scattering medium. However, this deterministic method for
retrieving light field information encoded in the wavefront has not yet been experimentally demonstrated. Herein, we dem-
onstrate light field information transmission through different scattering media with near-unity fidelity. Multi-dimensional
optical information can be delivered through either a multimode fiber or a ground glass without relying on any averaging or
approximation, where their Pearson correlation coefficients can be up to 99%.
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1. Introduction

Propagation of light in a scattering medium suffers from multi-
ple scattering in a counter-intuitive way[1]. During the propaga-
tion in strongly scattering media, both the amplitude and phase
information encoded in the wavefront of the incident light are
very fragile, resulting in the seemly chaotic speckle output[2,3].
Although light propagation in a linear and a time-invariant
dielectric medium is a deterministic process, the multiple scat-
tering nature of such a medium inevitably imposes a great chal-
lenge to precisely retrieving the encoded light field information.
Leveraging the unprecedented capabilities of wavefront shaping,
seeing through an opaque medium becomes a reality[4,5]. In par-
ticular, the unique combination of wavefront shaping and scat-
tering media resembles a powerful tool to manipulate multiple
optical scattering[2,6], facilitating versatile functionalities in opti-
cal focusing[7–9], imaging[10–19], 3D holography[20–23] and fiber
laser[24].
As a typical multiple input multiple output (MIMO) system,

optical multiplexing of data transmission through a scattering
medium enables promising applications in optical communica-
tions[25–27]. According to the transmission matrix (TM) theory,

multiple input multiple output of light in a scattering medium
can be modeled using a linear relationship,

Ėout = TĖin, �1�

where T is the TM (anM × Nmatrix), and Ėin (an N × 1 vector)
and Ėout (an M × 1 vector) are the input and output complex
amplitudes of light field, respectively. As long as the TM is accu-
rately calibrated, the information encoded in the input wave-
front can be precisely retrieved by using Ėin = T−1Ėout, where
T−1 is the inversion or pseudo-inversion of the measured TM
for the scattering medium. However, various types of experi-
mental noises impose a practical limit that makes both the TM
and the output amplitude and phase of light field difficult to per-
fectly measure[28], and the inverse TM (ITM) for recovering the
encoded wavefront is deemed to be impracticable[10,13,25,26,29].
As a result, realizing perfect retrieval of the input light field
information through a scattering medium using the ITM
remains a promising but unattainable theoretical prospect[4].
To date, sophisticated methods, including TM with a mean

square optimized operator (MSO)[10], polarization TM with
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an MSO[29], and speckle correlation scattering matrix
(SSM)[13,25,26], have been proposed for regaining the encoded
information instead using the ITM. However, all these methods
rely strictly on either statistics[10,29] or theoretical approxima-
tion[13,25,26], which essentially limits the attainable fidelity.
Furthermore, the state-of-the-art deep learning method also
cannot perfectly tackle this challenge[30–33] where the achieved
fidelity is still limited. In this Letter, we experimentally demon-
strate the multi-dimensional light field information transmis-
sion through scattering media with near-unity fidelity.

2. Experiments and Methods

The experimental setup for calibrating the TM of a scattering
medium is shown in Fig. 1, where the scattering medium can be
either a 1-m multimode fiber (MMF, diameter ϕ = 400 μm,
numerical aperture NA = 0.22, Newport) or a ground glass
(DG10-600, Thorlabs). A continuous-wave (CW) laser (wave-
length λ = 532 nm, MSL-S-532-50 mW CH80136, CNI) with
a maximum power of 50 mW is used. A polarizer produces an
incident laser beam with horizontal polarization for a phase-
only spatial light modulator (SLM, PLUTO-NIR, Holoeye).
An objective lens (Obj1) and a lens (L1) form a spatial filtering
and collimating system to expand the laser source. An ampli-
tude and phase-encoded input object Ėin is generated at the
proximal end of the scattering medium by the SLM. The ampli-
tude and phase-encoded beam is coupled into the scattering
medium using an objective lens (Obj2), and the scattered light
is collected by another objective lens (Obj3) at the output of
the scattering medium. Finally, the speckle is recorded by a
complementary metal oxide semiconductor (CMOS) camera
(MER-231-41U3C-L, Daheng Imaging) whose resolution and
pixel size are 1920 × 1200 and 5.86 μm, respectively.

In general, the experimental noise can be reduced by using the
MSO-based method instead of Ėin = T−1Ėout

[10],

Ein = j�T�T � σU�−1T��Ė2
out − Ė1

out�j, (2)

where Ein is a virtual amplitude image, σ is the experimental
noise factor to be optimized, U is the identity matrix, and � rep-
resents the transpose conjugate of a matrix. The result of Eq. (2)
is equivalent to the result of jT−1Ėoutj when σ is set to 0, and
Ė2
out − Ė1

out is replaced by the complex light field Ėout without
the ensemble average. Therefore, it pinpoints that the precise
measurement of the TM (T) and the output light field (Ėout)
is the cornerstone for realizing high-fidelity data transmission
using ITM.
The TMof the scatteringmedium is experimentally calibrated

bymodifying the full-field self-interference and four-step phase-
shifting method[28,34].The Hadamard basis is used as the in-
put basis. A blazed grating is introduced to achieve efficient
phase modulation in the first-order diffraction light, which is
crucial for the high-precision TM calibration and output light
field measurement. Substantially different from previous meth-
ods[10,29], a true amplitude and phase-encoded object is created
by a phase-only SLM using a double-phase method[35,36],
enabling the multiplexing of independent light field infor-
mation through the scattering medium. The spatial distribution
of the two-dimensional light field can be expressed as
T�x, y� = A�x, y�eiφ�x,y�, where A�x, y� is the targeted amplitude,
and φ�x, y� is the targeted phase. Two-dimensional complex
field T�x, y� can be decomposed into the sum of two phase func-
tions, P1�x, y� = φ�x, y� � arccos �A�x, y�=Amax� and P2�x, y�=
φ�x, y� − arccos �A�x, y�=Amax�. When Amax = 2 and T�x, y�=
eiP1�x, y� � eiP2�x, y�, the target optical field can then be generated
by using the phase-only SLM. At the same time, the amplitude

Fig. 1. Schematic and optical setup for realizing light field information transmission. “Obj” denotes microscopic objective (Obj1, 20×, NA = 0.4; Obj2 and Obj3,
10×, NA = 0.25). L, lens (L1 and L2, focal length f = 150 mm; L3, f = 100 mm). SM, a scattering medium that can be either an MMF or a ground glass. The iris
is used for selecting the +1st order diffraction light for efficient phase modulation.
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and phase information of the output light field Ėout are acquired
by generalizing the full-field self-interference and four-step
phase-shifting method[28,34], which substantially improves the
stability of the experimental setup. The Ėout can be accurately
obtained by

Ėout =
�I0 − Iπ� � i�I3π=2 − Iπ=2�

4R̄
, �3�

where R is the reference light field at the output of the scattering
medium, “ − ” above R indicates complex conjugate, and I is the
intensity recorded by the CMOS camera. The superscript of I
denotes the corresponding phase shift. The influence of the
reference field can be removed during T−1Ėout because of coaxial
self-interference.

3. Results and Discussion

In order to verify the effectiveness of this method, we experi-
mentally perform the data transmission mediated by the
phase-encoded wavefront through an MMF first, as shown in
Fig. 2(a). This figure shows that the quality of the reconstructed
orbital angular momentum (OAM) holograms (256-level gray-
scale) with different topological charges (l = 2–7) by the ITM
method is excellent, where the Pearson correlation coefficient

(PCC; see Section 1 of the Supplementary Material) with
near-unity fidelity (0.99) can be achieved. The retrieved results
using the state-of-the-art MSO-based method[10] under the
same experimental conditions are shown in Fig. 2(b). The recon-
structed fidelity evaluated by structural similarity index measure
(SSIM; see Section 1 of the Supplementary Material) of our
method is much larger than that of the MSO-based method
when no ensemble average is applied (1 realization and σ is opti-
mized). Although the retrieved results using the MSO-based
method can be improved by applying the ensemble average
(50 realizations and σ is optimized), the achieved fidelity is still
far from unity.
At the same time, the ratio γ between the output and input

channel numbers also plays an important role in increasing the
retrieving fidelity. Figure 2(c) shows that increasing γ will also
improve the fidelity, where the influence of experimental noise
on information retrieval is substantially reduced (see Section 2
of the Supplementary Material). According to the random
matrix theory[37,38], the minimum normalized singular value

of the TM is denoted by λMin
γ = 1 −

��������
1=γ

p
. The value of λMin

γ

increases together with the increasing of γ (see Fig. S1 of the
Supplementary Material), and the contribution of a channel to
the total energy transfer is proportional to the magnitude of the
singular value[39]. This means that more speckle information is
recorded by the camera at the output of the scattering medium

Fig. 2. Experimental phase retrieval results through an MMF based on the ITMmethod and the state-of-the-art MSO-based method. (a) Reconstruction of the 256-
level grayscale OAM phase holograms with different topological values l (l = 2–7). The resolution of all holograms is 32 × 32. The corresponding PCC and SSIM for
evaluating retrieved fidelity are also provided at the bottom of these figures. (b) Comparison of retrieval fidelity between the methods of ITM and MSO. Here,
M= 512 × 512 and N= 32 × 32. (c) Dependence of the retrieval fidelity on the ratio (γ) between the output and input channel numbers for the ITM and MSO-based
(50 realizations) methods. Typical retrieved results with different topological charges are shown in the insets of (b) and (c).
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for a larger γ, which results in more available spatial transmis-
sion channels to be selected, andmore energy can be transmitted
through the scattering medium.
As quantitatively shown in Fig. 3, the ITMmethod enables the

near-unity fidelity of the data transmission (solid circle) com-
pared with the MSO-based method (open circles and γ = 256,

averaging over 50 realizations) under the same experimental
conditions. It should be emphasized that the time consumption
of the MSO-based method is 100 times of our case. When the
experimental noise dominates the energy transfer channel
(see the case of γ = 1), the retrieving fidelity can be enhanced
by optimizing the experimental noise factor σ for the MSO-
based method. However, when the minimum normalized singu-
lar value associated with the most inefficient energy transport
channel is larger than the experimental noise level (γ ≥ 81),
the achieved fidelity of the MSO-based method cannot surpass
the result when the experimental noise factor σ is set to be 0, as
can be seen in Fig. 3 (see also Fig. S2 of the Supplementary
Material). When γ is further increased, T−1 is always the best
reconstruction operator because it does not introduce new
reconstruction noise. This means that although the MSO-based
method can reduce the influence of experimental noise on infor-
mation retrieval, the achieved fidelity has an upper limit im-
posed by its statistical nature, as shown by the cases of γ = 81
and γ = 256 in Fig. 3. Based on the results shown in Figs. 2
and 3, the demonstrated method is better than the state-of-the-
art MSO-based method[10]. It should be pointed out that the
achieved fidelity of this deterministic method can even outper-
form the deep learning methods demonstrated very recently[33].
We further demonstrate the optical information transmission

for more complex wavefronts through two typical scattering
media. The corresponding results for an MMF and a ground
glass are shown in Figs. 4(a) and 4(b), respectively. Here,

Fig. 3. SSIM of the retrieved OAM holograms (l= 4) as a function of the exper-
imental noise factor σ. The results using the ITM method and the MSO-based
method (50 averages) for different γ are shown in solid and open symbols,
respectively.

Fig. 4. Near-unity fidelity retrieval of 256-level grayscale phase-encoded images of human faces and natural scene images through (a) an MMF and (b) a ground
glass, respectively. The ground truths, the corresponding distributions of the output speckle, and the retrieved images are provided. The resolution of all trans-
mitted and retrieved images is 32 × 32. These images are adapted from the CelebA dataset[40] and the ImageNet dataset[41], respectively.
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256-level grayscale images of human faces and natural scenes
adapted from the CelebA dataset[40] and ImageNet dataset[41]

are used as the encoded phase wavefronts, respectively. As can
be seen from Fig. 4, the maximal PCC/SSIM achieved in the
experiment are up to 0.99/0.95, demonstrating the ability of
delivering multilevel digital information through different scat-
tering media. Similar images at the fourth and eighth columns of
Figs. 4(a) and 4(b) indicate that the performance of the ground
glass case is slightly better than that of the MMF case because
of better experimental stability. These experimental results indi-
cate that the phase information encoded in two spatial dimen-
sions can be harnessed for transmitting information in parallel,
facilitating the development of optical communication through
strongly scattering media[42–44].
More importantly, the proposed method can also achieve

light field information transmission through a scattering
medium. The corresponding results for theMMF case are shown
in Fig. 5. Here, fashion images adapted from the Fashion-
MNIST dataset are used[45]. Both amplitude and phase informa-
tion encoded in the wavefront can be retrieved with high fidelity
using the ITMmethod, as shown by the results in the second and
fifth rows of Fig. 5. The averaged PCC/SSIM of the retrieval
phase (amplitude) based on the ITM method is 0.99/0.62
(0.97/0.61). Although the SSMmethod can also recover the light
field information, it is essentially an approximate method[13].
Therefore, the experimentally achieved fidelity based on the
SSM method is quite limited. For comparison, the retrieval

results using the SSMmethod under the same experimental con-
ditions are also provided in Fig. 5. As can be seen from these
figures, the results of the ITMmethod are much better than that
of the SSM method, where the corresponding PCC/SSIM of the
retrieval phase (amplitude) based on the SSM method is only
0.84/0.39 (0.83/0.35). The high fidelity of light field information
transmission through a scattering medium using only a single
output light field Ėout substantially increases the capacity of
the optical information delivered over the MMF. It should be
mentioned that the full-field retrieval results are not as good
as the phase-only case because of the nonuniform amplitude dis-
tribution. The results over a ground glass are similar to theMMF
case (see Fig. S3 of the SupplementaryMaterial). All these results
validate the superiority of our method for overcoming multiple
scattering in scattering media and exploring light’s multidimen-
sions for delivering optical information.

4. Conclusion

In conclusion, we revisit the problem of light field information
transmission through scattering media using the ITM method,
where the near-unity fidelity of the light field information trans-
mission is experimentally demonstrated. Our method does not
require any ensemble average and theoretical approximation.
The achieved high fidelity of multiplexed data transmission sug-
gests a better solution in addition to the state-of-the-art MSO-
based method, the SSM method, and the deep learning method.
Our results might facilitate the advanced developments for fiber
communications and optical encryption. This technology can
also be generalized to other multiple input and multiple output
physical systems, including, but not limit to, acoustics[46] and
wireless communications[47].
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