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Nitrogen-vacancy (NV) centers in diamond are progressively favored for room-temperature magnetic field measurement.
The signal to noise ratio (SNR) optimization for NV diamond magnetometry generally concentrates on signal amplitude
enhancement rather than efficient noise processing. Here, we report a compound filter system combining a wavelet denois-
ing method and an adaptive filter for the realization of an efficient weak magnetic measurement with a high SNR. It allows
enhanced magnetic field measurement with an average SNR enhancement of 17.80 dB at 50 nT within 500 mHz to 100 Hz and
14.76 dB at 500mHz within 50 nT to 1100 nT. The introduction of this system in NV diamondmagnetometry is aimed to improve
signal quality by effectively eliminating the noise and retaining ideal signals.
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1. Introduction

Nitrogen-vacancy (NV) centers are typical luminous point
defects in diamond with the characterization of excellent spin
properties[1]. The NV diamond has offered new possibilities to
explore many intriguing quantum phenomena[2,3]. Meanwhile,
the NV diamond has also been used as a tool for the sensing of
the magnetic field[4,5], temperature[6], electric field[7], and pres-
sure[8] with high spatial resolution and high sensitivity via
optically detected magnetic resonance (ODMR). Recently, a
quantum sensing platform employing the NV diamond was
swiftly developed; in particular, the NV diamond-based magne-
tometry has gained increasing interest[9], which shows diver-
sities of applications such as in the fields of single-neuron
action[10], tumor tissues imaging[11], and geological samples[12].
However, the ODMR spectrum is always mixed with many

kinds of noise, which will cause error judgement for the real sig-
nal. Typically, the techniques of optimizing NV diamond
ODMR focus on signal amplitude enhancement[13-15]. For noise
processing, a differential measurement is generally performed
for the purpose of the reduction of laser-induced or micro-
wave-induced noise[5,9,16]. Few efficient noise-specific treat-
ments have been applied to optimize the NV diamond
magnetometry. The introduction of the digital filter approaches
into the NV diamond-based magnetic measurement will be

beneficial to the signal processing due to the remarkable denois-
ing effect.
There are many filter methods suitable for optical signal

denoising, such as wavelet filter[17], Kalman filter[18], and
Wiener filter[19]. The wavelet threshold denoising approach is
a common wavelet filter. It decomposes the spectral signal into
different wavelet coefficients, then removes the wavelet coeffi-
cients including noise with an appropriate threshold, and finally
reconstructs the signal. As a denoising approach of high effi-
ciency, the wavelet threshold denoising approach displays supe-
riority in the convenient calculation process, low computational
complexity, and obvious denoising effect[20]. Additionally, the
adaptive filter is also an important tool in signal processing
because it can automatically adjust the filter parameters to
achieve the optimal filter effect in an unknown environment.
Recently, the mixture of wavelet transform and adaptive filter
has been applied inmany applications, such as speech signals[21],
active noise control[22], and electrocardiogram signals[23], and
all of them have acquired notable achievements. However,
few works have been published on the use of digital filters in
the field of NV diamonds.
In this paper, we apply a compound filter system combining a

wavelet transform-based adaptive filter and a wavelet denoising
method to the NV diamond-based ODMR signal. Notably, it
accomplishes significant performance improvement when
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processing a noisy signal, even without acquiring the statistical
properties of any prior information. By evaluating the results of
signal to noise ratio (SNR) enhancement[24], we compare the
denoising effects of the filter system under different conditions.
The parameters of the adaptive filter are also updated by making
use of the SNR, in order to yield the optimal working points.
Actually, when digital filters such as the wavelet transform or
the adaptive filter are introduced into a field, they often make
great improvements in it[25-27]. So, we attempt to explore a
new possibility of improving NV-based signals. After comparing
with other filters, we have found that the combination of wavelet
denoising method combined time-frequency domains analysis
and an adaptive filter with automatic parameter adjustment out-
performs traditional filters. Such an NV-based magnetic mea-
surement denoising technique combining a filter system may
contribute to realizing the real-time weak magnetic field mea-
surement with high resolution.

2. Methodology

2.1. Experimental setup and differential measurement

As shown in Fig. 1(a), an excitation beam at 532 nm is focused
on a lightguide, where the diamond is located to illuminate NV
centers. The microwave field created by a microwave generator
(Keysight E8257D) and amplified by a power amplifier (Mini-
Circuits ZHL-16W-43-S+) is delivered to the NV centers
through a microwave printed circuit board with an antenna.
The fluorescence emitted from NV centers is collected by a pho-
todiode loaded with a long-pass filter and then transferred to a
lock-in amplifier (Zurich Instruments HF2LI) to be demodu-
lated. To perform the differential measurements, we monitor
an additional laser signal by a second photodiode to record
the laser power ripple.What is more, a pair of magnets is aligned
to the corresponding NV axis to provide a bias magnetic field of
about 70 G. A pair of Helmholtz coils is aligned with the same
axis which generates magnetic field to be measured.
The noise in measurements is greatly caused by the unstable

intensity of the laser[9], thus causing the amplitude noise asso-
ciated with the time domain in the NV-based fluorescence sig-
nal. In order to eliminate the impact of laser noise on real signals
to the greatest extent, we subtract the time domain variation of

the laser recorded by an extra photodiode from the collected
fluorescent signal. Figure 1(b) presents the sensitivity of raw
and differential signals. After the differential measurement,
the signal sensitivity at low frequency is significantly improved,
whereas further improved performance cannot be achieved at
high frequency owing to the inevitable electronics noise.
Therefore, we need to do more with the differential signal. To
get a better denoised signal, the wavelet transform is considered
because of its excellent performance in the signal processing
with the laser involved[28,29].

2.2. Discrete wavelet transform

Traditional filters are typically based on single-scale analysis in
either the frequency or time domain. The schematic of the signals
analyzed at different scales is presented in Fig. 2(a). Frequency
domain filters are always based on a Fourier transform-like
approach and lack temporal information, whereas time-domain
methods just consider small amounts of data around the target
point. Such single-scale representations of signals in either time
or frequency domain are often insufficient for effectively
extracting signals from the data[30]. Therefore, traditional filters
have inherent flaws. However, the wavelet transform can be used
for both time and frequency domain analysis using specific wave-
let functions; in this case, we purposely employ a wavelet denois-
ing method to process the differential signal.
Compared with the continuous wavelet transform, the dis-

crete wavelet transform can avoid redundant computation[22],
which also makes it more extensively employed. The continuous
wavelet transform formula can be expressed as[31]

Wf �a, b� =
1���
a

p
Z �∞

−∞
f �t�ψ �

�
t − b
a

�
dt, (1)

where a is the scale factor, b is the shift factor, ψ�t� is the wavelet
function, and the signal f �t� can be accurately reconstructed by

Fig. 1. (a) Schematic of the experimental setup. The inset depicts the detailed
section for ODMR. (b) The magnetic field sensitivity measured by continuous
wave ODMR method. The blue and red lines show the sensitivity obtained from
the direct outputs of measurements with and without the differential method.
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Fig. 2. (a) Schematic of the analysis of signals at different scales. (b) Block
diagram of the compound filter system using wavelet denoising approach and
the adaptive filter based on wavelet transform.
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Wf �a, b�. However, there is a correlation between each wavelet
transform Wf �a, b�; a and b can be discretized to eliminate the
correlation, so we set a and b as a = ai0, b = ai0jb0, i, j ∈ Z, a0 > 1,
and b0 > 0. Hence, the discrete wavelet function is as follows:

ψ i,j�t� = a−i=20 ψ�a−i0 t − j�, (2)

where the coefficient a−i=20 is a normalization constant; usually,
we take a0 = 2, b0 = 1, so it can be expressed as
ψ i,j�t� = 2−i=2ψ�2−it − j�[22].
During the wavelet transform, the NV diamond-based

ODMR signal is considered as a combination of signals at differ-
ent frequencies. The ODMR signal is firstly decomposed into the
high-frequency and low-frequency components. The high-fre-
quency component is maintained, and the low-frequency com-
ponent is decomposed again until the ODMR signal is finally
decomposed into wavelet functions of different scales.
The principle of a wavelet threshold denoising method is to

set an appropriate threshold; then we neglect some wavelet coef-
ficients, which are less than this threshold and considered to cor-
respond to the noise section. Meanwhile, the coefficients greater
than the threshold are preserved appropriately. It is worth not-
ing that the real signal should be retained as much as possible
when choosing the appropriate threshold to avoid signal distor-
tion. The final reconstructed signal s�n� will be obtained by the
wavelet reconstruction. In addition, by adjusting the decompo-
sition level of wavelet denoising, we can dynamically adjust the
eagerly retained frequency in the denoised signal. The wavelet
denoising method, due to its unique frequency-dependent
decomposition, can greatly preserve signal features during
the processing of the NV diamond-based ODMR signals.
Meanwhile, an adaptive filter permits the design of a signal-
based self-adjusting filter system, which may further highlight
the signal features.

2.3. Adaptive filter

Compared with traditional filters, which are restricted to fixed
parameters, adaptive filters can dynamically adjust their param-
eters using the filter algorithm[32], enabling them tomaintain the
optimal filtering effect continuously. To further improve the fil-
tering performance, a combination of the wavelet denoising
method and an adaptive filter is implemented here. Based on
the least mean square algorithm[33], the normalized least mean
square (NLMS) algorithm adopts a variable step factor with the
advantages of rapid convergence rate, tiny instantaneous output
error, and excellent denoising performance[33], so we choose it as
our adaptive filter algorithm. The NLMS algorithm is defined
as[22,34]

y�n� =
XL−1
l=0

ωl�n�x�n − l�, (3)

where x�n� is the input of the adaptive filter, y�n� is the output, L
is the order of the adaptive filter, and ωl�n� is the weight update
coefficients of the adaptive filter:

ωl�n� 1� = ωl�n� �
μ

δ� xT�n�x�n� e�n�x�n�, (4)

e�n� = s�n� − y�n�, (5)

where μ is the step size, δ is the constant added to prevent the
step size from getting too large when xT�n�x�n� is quite small,
e�n� is the residual error for each iteration, and s�n� is the wave-
let filtered signal.
The scheme of our compound filter system is shown in

Fig. 2(b). The adaptive filter has two input signal paths: the main
input path and the reference signal path. Here, after wavelet
denoising of the signal, we apply the wavelet transform again
and couple it with an adaptive filter to generate an artificial refer-
ence signal. That is, the reference noise signal d�n� extracted
from the original wavelet filtered signal s�n� containing the real
signal s0�n� and the residual noise n0�n� can serve as the refer-
ence signal of the adaptive filter to generate a signal y�n� as close
to n0 as possible.
Finally, e�n�= s0�n�� n0�n�− y�n�, that is e�n�= s�n�− y�n�,

is taken as the output signal of the filter system. The output of the
system is[23]

E�e2�n�� = E��s0�n� � �n0�n� − y�n���2�: (6)

When s0�n� is irrelevant to n0�n�, then the above equation can be
modified as

E�e2�n�� = E�s20�n�� � E��n0�n� − y�n��2�: (7)

Therefore, if we try to make y close to n0, we can attain the goal
of an adaptive filter to make e�n� reach a minimum, and
the above equation can be modified as min�E�e2�n���=
min�E�s20�n��� �min�E��n0�n� − y�n��2��.
Many types of filters have transition bands around the cutoff

frequency, where the signals containing the desired signal are
also attenuated. However, the combination of a wavelet denois-
ing method and an NLMS-based adaptive filter can be imple-
mented to denoise and retain the desired signals due to its
mixture of time and frequency domain analysis and automati-
cally adjustable parameters.
In many cases, improved sensitivity can be achieved by

increasing the total number of NV centers. Nevertheless, a larger
number of NV centers allow for a dramatic increase in photon
shot noise and some technical noise, thus limiting sensitivity[9].
By utilizing our proposed compound filter system on the exper-
imental data, we can effectively eliminate these types of noise
and improve the relevant parameters limiting sensitivity without
modifying the experiment equipment.

3. Signal Analysis

A pair of Helmholtz coils is used to generate a magnetic field of
about 200 nT to NV centers in the form of square and sinusoidal
waves, and the filtering effects with different characteristics are
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presented in Figs. 3(a) and 3(b), where the sampling rates are set
as 100 kSa/s.
It is clear that the implementation of the wavelet denoising

method is able to recover the real signal from the differential sig-
nal masked by massive noise and improve SNR and the quality
of signals. Symlet wavelets are generally abbreviated as SymN,
where N represents the order of the wavelet. In this work, the
SymN is employed at a certain decomposition level, which
can reduce the phase distortion and reconstruction of non-sta-
tionary signals[35]. In addition, we can find that the performance
is further improved after applying the adaptive filter based on
wavelet transform. Importantly, the effect gradually improves
with time because the column weight vector is initialized to
the zero vector at first, so it can hardly take effect at the begin-
ning. With the operation of the filter system, the column weight
vector will come into effect to make the approximate noise as
close to the real noise as possible[36]. Here, we focus on the sec-
tion where the adaptive filter works efficiently, which means the
region where enough sample numbers have been obtained.
In this study, the filtering process can be divided into three

steps. Firstly, the original wavelet filtered signal can be obtained
by only implementing the wavelet threshold denoising method
without corrupting the real signal to the greatest extent.With the
need for suitable wavelet basis function, we compared the SNR
enhancement obtained by applying the wavelet filter to the sig-
nal, and we select a suitable wavelet function ‘Sym6’ to meet our
experimental system, as it greatly preserves the real signal while
denoising. After that, the adaptive filter we have designed has
two input paths, and the original wavelet filtered signal is taken
as an input path to the adaptive filter. We again employ the
wavelet transform to estimate the original wavelet filtered signal
and take it as the second input path. SNR enhancement is com-
pared again, and the parameters of this second wavelet are finally
selected as the wavelet function ‘Sym2’ and decomposition level
8. Ultimately, the NLMS algorithm for the adaptive filter is
adopted to acquire the final filtered signal.
In the following, after the filter order has been chosen, we

evaluate the optimal performance of our filter system in order
to improve the SNR by varying the adjustable parameters,
i.e., the step size μ and the constant δ. The results of this opti-
mization analysis are summarized in Fig. 4. Figure 4(a) shows

the dependence of SNR on μ, and the corresponding SNR
reaches a maximum at μ = 0.69. In a second setup [see Fig. 4(b)],
the influence of δ is evaluated. We find that a maximum SNR of
21.86 dB was obtained for δ = 0.012, in contrast to the differen-
tial signal SNR of 3.95 dB and original wavelet filtered signal
SNR of 17.81 dB. Therefore, μ = 0.69 and δ = 0.012 are chosen
in our system.
The signals in Fig. 5(a) are based on ODMR with a periodical

sine magnetic field of about 50 nT. Compared to the differential
signal, in which there is toomuch noise to accurately observe the
magnetic field trends, the filtered signals indicate that the mag-
netic field can be classified as a periodic signal, while the fluc-
tuation of the signal is observed. In the meantime, for weak
signal measurement, the filtering effect is obviously improved
using the compound filtering system.

Fig. 3. Comparison of the filtered effect for the ODMR signals with and with-
out the filter when an extra magnetic field is generated as a (a) square or
(b) sinusoidal wave. There is a great deal of noise contained in the differential
signal (green), followed by original wavelet filtered signal (blue) and the signal
after the adaptive filtering (red).

Fig. 4. Evaluation of the SNR of the filtered signal with respect to the param-
eters of adaptive filter. (a) Variation with the step size μ parameter at a δ
parameter of 0.012. (b) Variation with the δ parameter at a μ parameter
of 0.69.

Fig. 5. (a) Comparison of the filtering effects for ODMR signals caused by a
weak magnetic field in the form of a sinusoidal wave. (b) Time domain and
(c) frequency domain characteristics of the signals with and without the filter
system at a fixed frequency. The green lines represent the differential signal;
the blue and red lines represent the original wavelet filtered signal and the
final filtered signal, respectively.
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In order to measure the environmental magnetic noise with
our system, we tune the microwave source working at a fixed
frequency. Figure 5(b) provides a comparison of noise reduction
effects under different conditions; the obtained filtered signal
shows low deviation from the true signal. The measured ODMR
signal is analyzed in frequency domain, where noise usually
manifests as a high-frequency component. Figure 5(c) shows
sensitivity comparison among all signals, we can discover that
the final filtered signal retains useful low-frequency signal below
about 5 Hz and removes high-frequency interference noise.
Compared with wavelet denoising, the compound filter system
has a more significant filtering effect in the range of 5–50 Hz.
For the purpose of analyzing the performance of the com-

pound filter system in more detail, we conduct comprehensive
experiments under different conditions. Figure 6(a) shows the
sensitivity discrepancy among the differential signal and various
filtered signals, where a magnetic field with ∼100 nT amplitude
and 10 Hz frequency is provided. This frequency domain spec-
trum exhibits a peak at 10 Hz frequency, which represents the
presence of a real desired signal. We have compared the com-
pound (Wavelet+NLMS) filter system with some conventional
filters: the second-order Butterworth filter, Gaussian filter,
and Median filter. Firstly, we have most effectively eliminated
the adverse effects of high-frequency noise on system measure-
ments with our proposed compound filter. In addition, filters
generally attenuate the signals. The inset of Fig. 6(a) clearly dem-
onstrates that our compound filter system exhibits the highest
fidelity in preserving the desired signal (97.77%), surpassing

the performance of the Butterworth filter (96.97%), Gaussian fil-
ter (94.74%), and Median filter (93.41%). The results indicate
that our compound filter system really excels in removing noise
while retaining signals. From Fig. 6(b), we can see that SNR
enhancement acquired by the compound filter system generally
presents an upward trend under the circumstances of lower fre-
quency and smaller magnetic field intensity.
Further evidence is shown in Figs. 6(c) and 6(d), where we

average all the SNR enhancement at some particular frequency
or some particular magnetic field intensity over the range of
500 mHz to 100 Hz or 50 nT to 1100 nT. The denoising effect
of the compound filter system is compared to those of three
other filters. The SNR of the compound filter is always higher
than that of the other filters, which shows that the compound
filter helps to achieve more efficient magnetic field measure-
ments in our experiments. Analyzing the performance of com-
pound filters, we have observed SNR enhancement of 17.80 dB
and 6.39 dB with corresponding magnetic field intensity of
50 nT and 1100 nT, respectively. Although the final filtered sig-
nal is improved in the condition of a large-intensity magnetic
field, the differential signal SNR is also quite high, so the
enhancement is relatively weaker than that in the case of low
SNR; that is, there is a stronger ability to remove useless noise
in the case of weak magnetic field.
Furthermore, the filter system provides a 14.76 dB improve-

ment in SNR at 500 mHz frequency compared with a 9.65 dB
improvement at 100 Hz frequency; in other words, it efficiently
removes high-frequency noise interference, especially when the
desired signal is at low frequency. This also means that the filter
system can be more advantageous in the low-frequency and
weak magnetic field measurements.

4. Summary

In this paper, we present a compound filter system for NV-based
ODMR signals. A differential measurement is firstly used to
obtain a differential signal with fairly significant denoising per-
formance at low frequency. In order to further reduce the influ-
ence of noise at high frequency, we then use the wavelet
threshold denoising approach to acquire an original wavelet fil-
tered signal. For the purpose of better performance, an adaptive
filter based on wavelet transform using the NLMS algorithm is
also employed to process the original wavelet filtered signal; cru-
cially, the evaluation of the adaptive filter coefficients is updated
by assessing SNR. The results suggest that the introduction of
this compound filter system can improve SNR and simultane-
ously has better performance than using just one single filter
method. Especially, at the magnetic field intensity of 50 nT,
the SNR enhancement is 2.78 times larger than the case with
a 1100 nT magnetic field intensity. Meanwhile, a similar situa-
tion occurs when the frequency varies. We believe that under
the circumstances of low frequency and small magnetic
field intensity the system tends to exhibit a more powerful
performance.

Fig. 6. (a) Sensitivity comparison between the differential signal (green) and
final signals filtered by various filters, where we produce a varying magnetic
field of about 100 nT at a frequency of 10 Hz. Inset shows comparison of the
fidelity of desired signals after being filtered: compound (Wavelet+NLMS) filter
(97.77%), Butterworth filter (96.97%), Gaussian filter (94.74%), and Median filter
(93.41%). (b) SNR enhancement effect for desired non-stationary magnetic
signals with different amplitudes and different frequency using our filter sys-
tem. More detailed analysis for frequency and magnetic field amplitudes is
shown in (c) and (d), for final signals filtered by compound filter (blue),
Butterworth filter (orange), Gaussian filter (yellow), and Median filter (purple).
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