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Quantum parameter estimation is a crucial tool for inferring unknown parameters in physical models from experimental
data. The Jaynes–Cummings model is a widely used model in quantum optics that describes the interaction between an
atom and a single-mode quantum optical field. In this Letter, we systematically investigate the problem of estimating the
atom-light coupling strength in this model and optimize the initial state in the full Hilbert space. We compare the precision
limits achievable for different optical field quantum states, including coherent states, amplitude- and phase-squeezed
states, and provide experimental suggestions with an easily prepared substitute for the optimal state. Our results provide
valuable insights into optimizing quantum parameter estimation in the Jaynes–Cummings model and can have practical
implications for quantum metrology with hybrid quantum systems.
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1. Introduction

Quantum metrology is a thriving interdisciplinary field that
combines measurement techniques with quantum mechanics
to achieve high-precision measurement of various physical
observables, such as force, velocity, mass, and temperature[1–3].
However, several physical quantities of interest may be impos-
sible to measure directly, leading to the development of param-
eter estimation theory[4–7]. Quantum parameter estimation,
already a vital subfield of quantum metrology, focuses on indi-
rectly inferring such quantities from data samples. The precision
of the resulting estimation can be determined using quantum
Fisher information (QFI), as the inverse of QFI sets the lower
limit on the estimation error[4–7]. As a result, pursuing the maxi-
mum QFI is a fundamental aspect of quantum parameter esti-
mation theory, as it provides the most optimal limit on precision
achievable with all available resources[3,8–10].
Over the past few decades, there has been a continuous emer-

gence of fruitful research in the field of quantum parameter esti-
mation, including studies on phase estimation in quantum
interferometers[11–13], estimation of magnetic field-related

parameters[10,14,15], and estimation of coupling strength in vari-
ous interaction models[16–18]. In some scenarios, it is necessary
to estimate multiple parameters simultaneously, as in quantum
imaging, which has driven the development of quantum multi-
parameter estimation[3,19–24], e.g., simultaneous estimation of
the positions of two non-coherent point sources[25–28], simulta-
neous estimation of rotating magnetic field strength and fre-
quency[14], and multiple phase estimation[29–33]. Even today,
quantum parameter estimation remains a vibrant field of
research.
The Jaynes–Cummings (J–C)model is a widely used model in

the field of quantum optics, and it is used to describe the inter-
action between a single-mode optical field and a two-level sys-
tem[34,35]. Despite its simplicity, it has been successfully applied
to the study of various quantum effects, such as entangle-
ment[36–38], collapse and revival of a population[39], and quan-
tum teleportation[40–42]. The study of the parametric estimation
problem based on the J–C model is not only essential for the
development of the applicability of quantum parameter estima-
tion theory but also contributes to an in-depth understanding
of the quantum enhancement effect on precise measurements.
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One of the early works in this direction was by Genoni et al. in
2012 who studied the estimation of the coupling constant in the
J–C model. They found that the QFI is related to the excitation
number of the probe and is independent of the parameters to be
estimated, and they provided an optimal measurement strat-
egy[43]. More recently, Allati et al. extended the parameter esti-
mation problem in the J–C model to estimate the weight and
initial phase of the initial state and used Shannon entropy to
investigate the relationship between quantum entanglement
and QFI[44]. Moreover, there have been efforts to study multi-
parameter estimation in the J–C model. For instance, recently,
Houssaoui et al. demonstrated that the average number of pho-
tons, the number of photons inside the cavity, the dimensionless
detuning parameter, and the dimensionless time parameter can
be estimated simultaneously[45]. These studies highlight the
importance and versatility of using the J–C model in quantum
metrology research.
It is important to note that previous research on parameter

estimation in the J–C model has been limited to a single sub-
space of the complete quantum state space of the composite sys-
tem, composed of a two-level atom and a single-mode optical
field. To fill this research gap, we investigate the estimation of
coupling strength from a full Hilbert space perspective. Our
study reveals that the optimization problem of coupling strength
estimation in the whole space can be simplified into two parts:
the optimization of the quantum state in each subspace and the
optimization of the probability distribution of individual sub-
spaces in the whole Hilbert space. From this, we obtain the ulti-
mate precision limit for estimating coupling strength under the
J–C model. Additionally, we consider the influence of different
typical quantum states of the optical field, i.e., photon number
statistical distributions, on the estimation precision. Notably, we
find that when the optical field resonates with the atom, the
coherent state is the optimal initial state for estimating the cou-
pling strength, as it provides the highest estimation precision.
This study sheds light on parameter estimation and initial state
optimization problems of composite quantum systems involv-
ing atom-light interaction.

2. Background

2.1. Quantum Fisher information based on generator

In order to facilitate readers’ understanding of the current work,
let us first briefly review the relevant theories for calculating the
QFI based on the generator method. For a closed system, sup-
pose the system is initially prepared in the state jψ0i. Evolved for
a period of time under the action of Hamiltonian Ĥ�g�, the out-
put state reads as jψ gi = Ûg jψ0i. Here, Ûg = e−iĤ�g�t is the
parameter-dependent time evolution operator. According to
the definition of QFI, one can easily obtain

Fg = 4�h∂gψ g j∂gψ gi − jhψ g j∂gψ gij2�, �1�

where Fg denotes the QFI about unknown parameter g .
Therefore, the lower bound of the variance when estimating g
satisfies[4–7]

hΔ2ĝi ≥ 1=νFg : �2�

This is the famous Cramér–Rao inequality. Here, ν is the
number of resources used in the estimation procedure,
e.g., the number of estimate protocol repetitions.
The Hermitian operator[10,46,47] is defined as

ĥHg = i�∂gÛ†
g�Ûg , �3�

namely, the form of the generator of the local parameter trans-
lation about g, in which the superscript “H” indicates that we are
working with the Heisenberg representation. Further, we substi-
tute Eq. (3) into Eq. (1) to obtain[3]

Fg = 4�hψ0j�ĥHg �2jψ0i − hψ0jĥHg jψ0i2� = 4hψ0j�ΔĥHg �2jψ0i:
�4�

The above formula indicates that, for a closed system, the QFI
of the pure state is proportional to the variance of the generator.
In particular, when selecting the initial state as jψ0i=
1��
2

p �jλmax�ĥHg �i � eiϕjλmin�ĥHg �i�[46,48], the maximum quantum

QFI is obtained, i.e.,

Fg,Max = �λmax�ĥHg � − λmin�ĥHg ��2, �5�

where λmax�ĥHg � �λmin�ĥHg �� is the maximum (minimum) eigen-

value of ĥHg , and jλmax�ĥHg �i �jλmin�ĥHg �i� is the corresponding
eigenstate. Note that the relative phase ϕ in the initial state
has no effect on the first- and second-order moments of the gen-
erator, and thus does not affect the maximum QFI. Thus, the
highest estimation precision of the unknown parameter g is

completely determined by the properties of the generator ĥHg .

2.2. Jaynes–Cummings model

The J–C model describes the interaction between a single-mode
optical field and a two-level atom, which is described by
Hamiltonian �ℏ = 1�[34,35],

Ĥ =
ω0

2
σ̂z � ωâ†â� g�σ̂�â� â†σ̂−�, �6�

where ω0 denotes the atomic transition frequency, ω is fre-
quency of the optical mode, g describes the coupling strength
between the optical field and the atom, σ̂x,y,z are the Pauli matri-
ces, and σ̂± = �σ̂x ± iσ̂y�=2 denotes the flip-up (flip-down) oper-
ator. Once the excitation number operator N̂ = â†â� σ̂�σ̂− is
defined, then we can divide the state space of the J–Cmodel into
a series of direct sums of subspaces[34,35]. The reason is that the
total number of particles (N) corresponding to operator N̂ in
each subspace is determined. For a subspace with a value of

Vol. 21, No. 10 | October 2023 Chinese Optics Letters

102701-2



N = n, the basis vectors in the subspace are je,n − 1i and jg,ni.
Therefore, the Hamiltonian Ĥ in this subspace is expressed as
(σ̂z representation)

ĤN =

2
64 �N − 1

2�ω� 1
2Δ g

����
N

p

g
����
N

p �N − 1
2�ω − 1

2Δ

3
75

= g
����
N

p
σ̂1 �

1
2
Δσ̂3, (7)

where Δ = ω0 − ω is the detuning of the atom and the optical
field, the subscript “N” in ĤN means that the total excitation
number of this subspace is N , and σ̂1,2,3 are

σ̂1 =
�
0 1
1 0

�
, σ̂2 =

�
0 −i
i 0

�
, σ̂3 =

�
1 0
0 −1

�
: (8)

Note the distinction between σ̂x,y,z , which only describes the
atom, and σ̂1,2,3, which describes a composite system composed
of an atom and an optical field. For the convenience of sub-
sequent discussions, we specify the subspace with a total excita-
tion number of N as the Nth subspace.

3. Estimation of Coupling Strength in the Jaynes–
Cummings Model

Currently, we take the coupling strength g as the parameter to be
estimated. We first discuss the estimation of g in a single sub-
space of the J–C model, and then turn to the estimation of g
in the whole Hilbert space.

3.1. Estimation of coupling strength in subspaces

Based on Eqs. (3) and (7), one can obtain the generator of the
Nth subspace,

ĥH,N
g = c1σ̂1 � c2σ̂2 � c3σ̂3, (9)

with

c1 = −
����
N

p �4Ntg2Ω� Δ2 sin�tΩ��
Ω3 ,

c2 = −
Δ

����
N

p �1 − cos�tΩ��
Ω2 ,

c3 = −
2NΔg�tΩ2 −Ω sin�tΩ��

Ω4 : (10)

Here, Ω =
�����������������������
Δ2 � 4Ng2

p
denotes the Rabi frequency.

In theory, the optimal state at this point should be the
equal weight superposition of the two eigenstates of ĥH,N

g .
Unfortunately, the current optimal state contains the parameter
g to be estimated, which needs to be adaptively prepared.
Moreover, it is very difficult to find the state without the param-

eter g that maximizes the variance of ĥH,N
g (note that the optimal

state is not unique; this is because the phase between the eigen-
states of the two generators can be arbitrary). Obviously, this
creates limitations for practical applications.
Interestingly, one finds that at the long-term limit, ĥH,N

g can be
approximately written as

ĥH,N
g ≈ d1σ̂1 � d3σ̂3 �11�

with

d1 = −
4

������
N3

p
g2t

Ω2 , d3 = −
2NΔgt
Ω2 : (12)

This is because when the time is very long, the part that is pro-
portional to t in Eq. (10) dominates. After normalizing long-

term ĥH,N in Eq. (11), we get

ĥH,N
g = −

2Ngt
Ω

~n ·~σ, �13�

where~n = �2g
���
N

p
Ω ; 0; ΔΩ� is the unit vector. In particular, although

~n also contains g, one can easily find a vector orthogonal to~n,
such as the eigenstate of σ̂2, which ensures the maximum vari-

ance of ĥH,N
g . Therefore, under the long-term limit, the optimal

initial state of the estimated g in the Nth subspace is approxi-
mately

jψ �N�
0,Maxi =

1���
2

p �je,N − 1i � ijg,Ni�: �14�

According to Eqs. (5) and (11), the maximum QFI for esti-
mating coupling strength in the Nth subspace is given by

F�N�
g ,Max =

16N2g2t2

Ω2 : �15�

Figure 1 depicts the set of optimal initial states for estimating g
under the Bloch sphere representation, in which Figs. 1(a) and
1(b) correspond to short and long times, respectively. We can

Fig. 1. Red vector represents the direction of the generated ĥH,Ng on
the Bloch sphere. The white curve corresponds to the set of quan-

tum states that are orthogonal to ĥH,Ng and maximize its variance.

(a) At a small time scale of gt = 1, the eigenstates of σ̂2 (marked
as white dots) do not belong to the optimal state set. (b) At a longer
time scale of gt = 100, the eigenstate of σ̂2 lies on the white curve,
indicating that the state is one of the optimal initial states. Here, we
take N = 1 and Δ = 2g.
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clearly see that the eigenstate of σ̂2 is indeed the optimal state
when the time is long. Therefore, in the following discussion,
we discuss the estimation problem under the condition of
long-time parameterization.

3.2. Estimation of coupling strength in whole Hilbert space

In the J–C model, the direct-sum space of each subspace consti-
tutes the whole Hilbert space. Hence, the quantum state of the
whole space can be written as the direct-sum of all subspace
quantum states, i.e.[49,50],

jψ0i =
M∞
N=0

CN jψ �N�
0 i, �16�

where CN is the probability amplitude of the excitation number
operator in the Nth subspace, satisfying

P∞
N=0 PN = 1 and in

which PN = jCN j2 denotes the probability distribution of the
Nth subspace. Notice that the basis vector of the subspace with
N = 0 is jg; 0i, which does not participate in the evolution of the
quantum state and then does not give the quantum state infor-

mation about g . In addition, the generator ĥH,N
g is naturally 0

when N = 0.
Similarly, the total generator can be expressed as[49,50]

ĥHg =
M∞
N=0

ĥH,N
g : �17�

Insert Eqs. (16) and (17) into Eq. (4) and we obtain the expres-
sion of the QFI for the total Hilbert space,

F g = 4

�X∞
N=0

PNhψ �N�
0 j�ĥH,N

g �2jψ �N�
0 i

�

−4
�X∞

N=0

PNhψ �N�
0 jĥH,N

g jψ �N�
0 i

�2

: (18)

Note that owing to the second term on the right side,F g is not
a simple summation of the QFI for each subspace, which is

F �N�
g = 4�PNhψ �N�

0 j�ĥH,N
g �2jψ �N�

0 i� − 4�PNhψ �N�
0 jĥH,N

g jψ �N�
0 i�2:

(19)

This indicates that there may be associations between differ-
ent subspaces. In particular, one can see that the F g depends on
the quantum state of each subspace and the probability distribu-
tion PN . Therefore, the optimization of F g can be divided into
two steps: the first step is to optimize the quantum state of each
subspace, and the other is to optimize the probability distribu-
tion PN .

3.2.1. Optimization of the subspace quantum state

In Eq. (18), we notice that the expected value of the square of

ĥH,N
g is independent of the subspace quantum state (see first

term), while the square of the sum of ĥH,N
g expected value is

always non-negative (see second term). Therefore, the optimiza-
tion goal of the subspace quantum state is to make the second

term of Eq. (18) equal to 0, that is
P∞

N=0 PNhψ �N�
0 jĥH,N

g jψ �N�
0 i= 0.

Obviously, when the quantum state of each subspace is in the

optimal initial state, i.e., hψ �N�
0,MaxjĥH,N

g jψ �N�
0,Maxi = 0, the optimiza-

tion of the subspace quantum state is completed. Furthermore,
the F g of the whole space is simplified as

FO
g =

X∞
N=0

PNF
�N�
g,Max, �20�

where F�N�
g,Max = 4hψ �N�

0,Maxj�ĥH,N
g �2jψ �N�

0,Maxi, owing to

hψ �N�
0,MaxjĥH,N

g jψ �N�
0,Maxi = 0, and the superscript “O” indicates that

we have completed the first step of optimization. At this point,
the full-space quantum state after subspace optimization is

jψO
0 i =

L∞
N=0 CN jψ �N�

0,Maxi. At present, the quantum state of each
subspace is given by Eq. (14). Next, we investigate the optimi-
zation of the probability distribution for each subspace.

3.2.2. Optimization of subspace probability distribution

Interestingly, we note that F g is positively correlated with the
excitation number N . As a result, as long as the photon number
of the optical field is continuously increased, the QFI becomes
larger, resulting in higher estimation precision. However, the
intensity of the optical field that can be achieved in the experi-
ment is limited. This means that the optimization of the excita-
tion number distribution PN should be based on the premise that
the average excitation number remains unchanged. Currently,
we limit the average number of excitations to N̄ and discuss
them separately in the case of large and small detunings where
N̄ =

P∞
N=0 PNN .

In the case of small detuning, by Eq. (15) themaximumQFI in
the subspace is approximately

F�N�
g,Max =

16N2g2t2

Δ2 � 4Ng2
≈ 4Nt2: �21�

One can find that F�N�
g,Max is approximately proportional to the

excitation number N . As a result, when the average excitation
number is restricted to N̄ , the QFI of the subspace correspond-
ing to the excitation number distributions PN reads
as FO

g ≈ 4N̄t2.
In the situation of large detuning, the maximum QFI in the

subspace is approximately
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F�N�
g,Max ≈

16N2g2t2

Δ2 : �22�

Namely, F�N�
g,Max is approximately proportional to the square of

the excitation number. Therefore, when the average excitation
number N̄ is determined, the larger the variance of the excitation
number, the greater the FO

g .
To study the limiting QFI under increasing excitation number

fluctuation ΔN̂ , we define a binary state,

jψO,bs
0 i =

�����
P0

p
jg; 0i �

������
PN

p je,N − 1i � ijg,Ni���
2

p : �23�

The superscript “bs” indicates that the probabilities are distrib-
uted only in the subspace corresponding to the minimumN = 0
and the maximum N excitation numbers with probabilities P0

and PN = 1 − P0, respectively. Note that in order to meet the
requirement that the average excitation number is N̄ , PN =
N̄=N is required. In the current situation, the QFI of g in the
whole space is

FO,bs
g = P0F

�0�
g,Max � PNF

�N�
g,Max =

N̄
N

16N2g2t2

Δ2 � 4g2N
: �24�

In Fig. 2, we plot the variation of whole space FO,bs
g and the

excitation number varianceΔN2 overN . We can clearly see that
in the case of 4Ng2 ≪ Δ2 (large detuning),FO,bs

g is proportional
to the variance of the excitation number. However, as N contin-
ues to increase, the approximate 4Ng2 ≪ Δ2 gradually fails, and
at this point FO,bs

g gradually approaches the limit value

limN~∞F
O,bs
g = 4N̄t2, which is the same as the result in the case

of small detuning.

3.2.3. Performance of direct-product state

According to the previous section, the optical field in the opti-
mized quantum state jψO

g i is highly entangled with the atom,
which leads to difficulties in preparation. Considering the exper-
imental ease of preparation of the direct-product state, in this

section, we look for a direct-product state jψP
g i to substitute.

Suppose the form of the direct-product state is

jψP
0i = jψoi ⊗ jψai, �25�

with

jψoi =
X∞
n=0

jcnjeiϕnjni, jψai =
1���
2

p �jei � e−iχjgi�, �26�

where jψoi and jψai are quantum states of the optical field and
the atom, respectively; χ is the relative phase between the ground
and excited states of the atom; and ϕ is the phase difference
between the adjacent optical Fock states. In particular, we let
the phase of the complex amplitude cn be linear with the
photon number and follow a Gaussian distribution (n̄ and
Δn2 are the mean and variance, respectively), satisfying jcnj2=
N exp�−�n − n̄�2=�2Δn2��. This is because some typical quan-
tum states in quantum optics meet this assumption, such as large
amplitude coherent states and squeezed states with large squeez-
ing degrees.
In comparing the effects of replacing jψP

0i with jψO
0 i, we find

that a reasonable limitation is that the average excitation num-
ber and excitation number fluctuations satisfy N̄ = n̄� 1=2 and
ΔN = Δn, respectively. For this reason, we also assume that the
excitation number distribution of the optimized state satisfies
the Gaussian type[34,35,51], i.e., PN =N exp�−�N − N̄�2=
�2ΔN2��. We label the QFI corresponding to states jψP

0i and
jψO

0 i as F P
g and FO

g , respectively.
As shown in Fig. 3, we have drawn the phase diagram ofR =

F P
g =FO

g as a function of the phase difference and particle num-
ber fluctuation. Obviously, the larger R means that the direct-
product state jψP

0 i is closer to the optimal state jψO
0 i in effect.

From Fig. 3, one can find that when the phase difference between

0 1 2 3 4 5
104

105

106

107
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104
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106

Fig. 2. Blue dashed line depicts the variation of FO,bs
g with respect

to the excitation number N. The blue solid line is for the limit case of
small detuning, while the orange solid line represents the variation

of varianceΔN2 with respect to N. Here, we set N̄ = 10, gt = 100, and
Δ = 100g.
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Fig. 3. Density plot ofR =FP
g=FO

g versus the phase difference and
particle number fluctuation. (a) Large detuning with Δ = 200g.
(b) Small detuning with Δ = 0 (resonance between the atom and
the optical field). Other parameters are gt = 100 and n̄ = 100.
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the optical field and the atom is fixed at ϕ − χ = ±π=2,R ≈ 1. In
the case of large detuning, this phase-matching condition is
muchmore relaxed, andR does not dropmuch in themismatch
region. This indicates that the direct-product state we construct
is approximately the optimal state in the current situation.
Finally, we investigate the impact of different initial states of

the optical field on estimation precision. Here, we mainly con-
sider coherent states, amplitude-squeezed states, and phase-
squeezed states.
Case I: Assume that the initial state of the optical field is a

coherent state, i.e., jψoi ∝
P

αn��
n

p jni[34,35]. At present, the phase
difference between the adjacent Fock states is the phase of the
coherent state. Therefore, for the coherent state optical field,
only the phase difference between its complex amplitude and
the atomic phase is ±π=2 to achieve the effect of subspace
optimization.
Case II: Suppose the initial state of the optical field is a

squeezed coherent state, i.e., jψoi = D�α�S�ξ�j0i. Here, D�α� =
exp�αa† − α

�
a� denotes the displacement operator[34,35], and

S�ξ� = exp��ξ�
a2 − ξa†2�=2� is the squeezed operator[34,35], in

which the squeezed parameter is defined as ξ = r exp�iθ�. In
the case that the displacement parameter α is real, θ = 0 and θ =
π correspond to an amplitude-squeezed state and a phase-
squeezed state, respectively. Note that the phase difference
between the complex amplitudes of the adjacent Fock states
in the squeezed states is usually not exactly constant and is dif-
ficult to calculate. But in the case of strong squeezing, the phase
difference is approximately ϕ = θ=2. In the case of small squeez-
ing, the phase difference of the neighboring Fock states is
approximately constant in the region where the photon number
is mainly distributed. Therefore, we numerically calculate the
phase difference between the adjacent Fock states in the main
distribution region of the particle numbers and then adjust
the atomic phase based on this phase difference to meet
ϕ − χ = ±π=2.
Figure 4 plots the QFI as a function of encoding time t for the

different quantum states of the optical fields, including the
coherent state, the amplitude-squeezed state, and the phase-
squeezed state. In Fig. 4(a), we can see that the three lines over-
lap. This indicates that when the atom resonates with the optical
field and the average number of photons remains the same, the
estimation precision obtained by using the three different quan-
tum optical states as initial states to estimate the coupling
strength g is the same. The physical mechanism behind this is
that when the detuning is very small, the maximum QFI of each
subspace is proportional to the excitation numbers. Therefore,
when the average excitation number is equal, the QFI of the
whole space is completely equal. In addition, it can satisfy the
subspace optimal state, owing to the quantum state we choose,
and meet the phase matching requirements, which lead to the
coinciding of three curves in the figure. However, in the large
detuning case, as shown in Fig. 4(b), even though the average
number of photons of the three quantum optical field states is
the same, there is a bias in the estimation precision given by
using them as initial states. We find that under the same

resources, the phase-squeezed state has the best effect in estimat-
ing coupling strength, while the amplitude-squeezed state has
the worst effect. Physically, as mentioned earlier, in the case
of large detuning, the maximum QFI of the subspace is propor-
tional to the square of the excitation number. Therefore, when
the average excitation number is the same, the larger the fluc-
tuationΔN of the excitation number, the larger QFI of the whole
space. Notice that under the same average excitation number,
the photon number fluctuation in the amplitude-squeezed state
is the smallest, while the photon number fluctuation in the
phase-squeezed state is the largest. The phase-squeezed state
is thus superior to the other two states when estimating the cou-
pling strength.
Comparing Figs. 4(a) and 4(b), we can find that the precision

of estimating the coupling strength g is higher under the reso-
nance condition. In particular, the estimation precision given by
the three quantum optical states is the same under the resonance
condition. Therefore, in the experiment, one can obtain a high-
precision estimation of coupling strength through an easily pre-
pared coherent-stated optical field, which has great practical
significance.

4. Conclusion

In summary, we have investigated the parameter estimation and
initial state optimization problems in the J–C model. We found
that, unlike most parameter estimation studies where the opti-
mal initial state depends on the specific parameter values, there
exists a parameter-independent optimal initial state after long-
time evolution. This result has practical implications for the
application of optimized initial states. Given the large state space
of the J–C model, we separated the optimization problem into
two steps based on the block-diagonal property of the
Hamiltonian equation. Specifically, we optimized the quantum
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Fig. 4. FP
g as a function of encoding time t for the different quan-

tum states of optical fields, which (a) in the case of small detuning is
Δ = 0 and (b) in the case of large detuning is Δ = 50g. The complex
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ffiffiffiffiffi
20

p
eiπ=2, and the corre-

sponding atomic state is �jei � jgi�= ffiffiffi
2

p
. The squeezed amplitude

of the squeezed states is r = 0.7. When the squeezed angles are θ

= 0 (amplitude-squeezed state) and θ = π (phase-squeezed state),

the corresponding atomic states are �jei � e−iπ=2jgi�= ffiffiffi
2

p
and
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p
, respectively. Importantly, for the sake of fair-

ness, it is necessary to set the average number of photons to be

the same for different optical field states, i.e., α =
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20 − sinh �r�2

p
.
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state of each subspace in the first step and optimized the exci-
tation number distribution of the entire space in the second step.
Finally, we found a direct-product state that can replace the
highly-entangled optimal initial state to achieve the highest esti-
mation precision, and we investigated the estimation results of
several common photon-number statistics distributions under
large and small detuning. Our findings showed that, under
the resonant condition between the field and the atom, coherent
states can be used as initial states to achieve the ultimate estima-
tion precision by controlling the phase difference between the
light field and the atom. As for the experimental measurement
scheme, the highest possible estimation precision can be
achieved by performing positive operator valued measure
(POVM) on the final state ρg with the eigenvectors of the sym-
metric logarithmic derivative operator whose expression is L̂g =
2∂gρg in the pure-state case.
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