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The lateral geometry and material property of plasmonic nanostructures are critical parameters for tailoring their optical
resonance for sensing applications. While lateral geometry can be easily observed by a scanning electron microscope or an
atomic force microscope, characterizing materials properties of plasmonic devices is not straightforward and requires
delicate examination of material composition, cross-sectional thickness, and refractive index. In this study, a deep neural
network is adopted to characterize these parameters of unknown plasmonic nanostructures through simple transmission
spectra. The network architecture is established based on simulated data to achieve accurate identification of both geo-
metric and material parameters. We then demonstrate that the network training by a mixture of simulated and experi-
mental data can result in correct material property recognition. Our work may indicate a simple and intelligent
characterization approach to plasmonic nanostructures by spectroscopic techniques.
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1. Introduction

Nanostructured metallic structures can induce the excitation of
plasmonic resonance and confine the light field into the nano-
scale regime. The choice of nanostructure geometry (such as
shape, size, period, interparticle distance) and materials prop-
erty (such as metal, thickness, dielectric coating) can alter the
far-field resonant spectrum and near-field electromagnetic field,
thus offering a giant optical tuning space for extraordinary pho-
tonic devices[1–3]. Such carefully designed plasmonic resonances
have been applied in ultrasensitive biochemical detection[4,5],
superresolution imaging[6–8], and structural colors[9–12], etc.
The exact light–matter interaction relies critically on the

structure-response relationship; thus, a thorough understanding
of the optical properties depends on an accurate nanostructure
characterization[13–16]. The subwavelength nanostructure reso-
nating in the visible wavelength regime has a lateral dimension
on the order of 100 nm with different shapes, sizes, periods, and
interparticle distances. The exact geometric parameters are usu-
ally characterized by advanced surface microscopic tools such as
the scanning electron microscope (SEM) and atomic force
microscope (AFM). However, the material properties such as
metal film with tens of nanometers thickness are difficult to
characterize and require delicate cross-sectional milling and

examination. This is only accessible by expensive focused ion
beam (FIB) milling and high-resolution SEM[15,16]. Moreover,
different types of metals and transparent protective coatings on
plasmonic nanostructures are also challenging to characterize
without a priori information of its materials property, unless
advanced material characterization tools can assist. Moreover,
such accurate microscopic characterization is usually performed
on specially prepared conductive and rigid substrates, where
device damage is often unavoidable. It is also quite challenging
to complete an easy and direct characterization on soft and non-
conductive substrates.
As has been investigated extensively in recent years, deep-

learning (DL)-based algorithms provide a revolutionary
approach for inversely designing nanophotonic devices, as the
physical relationship between the input and output layers can be
accurately mapped through a multilayer perceptron[17–22]. By
inputting desired nanophotonic resonance property such as
amplitude, near-field or phase, the deep neural network (DNN)
can output the nanophotonic structural design that can pro-
duce such optical responses. As the mapping between struc-
ture and spectrum is highly accurate and accessible by DNN,
we propose to use such an architecture to achieve structural
characterization by spectroscopic techniques. Very recently,
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Movsesyan et al. have successfully achieved accurate recognition
of solution-processed plasmonic nanoparticles by using syn-
thetic data trained by artificial neural networks[23]. Though
the results are valid for theoretical conditions, there remains a
question about whether DNN is applicable for experimentally
obtained data, especially for recognizing large-area, periodic
plasmonic nanostructures fabricated with processing variations.
In this work, we choose the large-area, quasi-3D plasmonic

nanostructures that can be fabricated by low-cost and high-
throughput nanoimprint lithography[15,16,24,25]. This technique
allows us to generate hundreds of different experimental sam-
ples in a short period of time. The resulting plasmonic metasur-
face can be made into periodic nanoholes or nanopillars by
depositing different metal films and dielectric coatings on soft
substrates. The optical response is a collective effect of both geo-
metric and material properties. While the lateral geometry can
be quickly identified by an SEM, the parameters of metal type,
metal film thickness, and dielectric coating of these plasmonic
nanostructures are extremely difficult to characterize if no infor-
mation is given beforehand or the samples are mixed up.
We first use simulated data of various plasmonic structures

and their corresponding transmission spectra to train the
DNN. After the training is completed, the input of an unknown
spectrum can be characterized for its exact geometric parame-
ters, such as structural type (nanohole or nanopillar), diameter
and period, and its material parameters, such as metal type,
thickness, and dielectric coating refractive index. Finally, by col-
lecting a small number of experimental data, we demonstrate an
accurate experimental characterization of the materials property
after a DNN training of mixed experimental and simulated data.
Our approach indicates DNN is robust to characterize accurate
material parameters for unknown plasmonic nanostructures by
just simple spectroscopic measurement.

2. Results

Figure 1(a) shows the methodology of using DNN to recognize
the critical parameters of quasi-3D plasmonic nanostructures.
We simulate or experimentally fabricate different plasmonic
nanostructures with different characteristic parameters, such
as the diameter, thickness, and period shown in Fig. 1(b), the
structure type of nanohole and nanopillar shown in Fig. 1(c),
different plasmonic metals, such as Au, Ag, and Al [Fig. 1(d)],
and the refractive index of the protective dielectric coating
shown in Fig. 1(e). Among these device parameters, we want
to point out that although nanoholes and nanopillars can be
easily differentiated side by side under a high resolution SEM,
when only one type of structure is examined or dielectric coating
is present over the surface, it is not straightforward to character-
ize its structural type. As shown in Fig. 1(a), the transmission
spectra (Tn × 1) are set up as input and the multiple plasmonic
device parameters are set up as output. We collect the training
data simulated by the finite-difference time-domain (FDTD,
Lumerical, Inc.) method and construct four different DNNs.

We start with the simple case of an Au plasmonic device with-
out dielectric coating. As illustrated in Fig. 2(a), we establish and
train DNN1 using TensorFlow in Python, described in many
works. The data set consists of 5250 groups of data simulated
by FDTD, and the parameters are diameter ranging from 400
to 800 nm at a step size of 20 nm, period ranging from 1.4 to
1.7 times the diameters, and thickness of Au films ranging from
20 to 80 nm at a step size of 2.5 nm. The input dimension is
201 × 1 as the transmission spectrum range is from 400 to
1400 nm with a 5 nm step size, and the output dimension is
4 × 1, corresponding to the structure type (nanohole or nanopil-
lar), diameter, period, and the thickness of the Au film. The first
hidden layer has 1000 nodes, while the other four layers have 670
nodes. Here we used the mean absolute error (MAE) instead of
mean squared error (MSE) as the loss function[26]. Other set-
tings include an Adamax optimizer and rectified linear unit
(ReLU) activation function[27], as summarized in Table S1
(see Supplementary Material). The whole data set is divided into
three parts randomly: 80% as the training data set, 10% as the
validation data set, and the remaining 10% as the testing data
set. After 1000 epochs of training, the DNN exhibits low loss
(Fig. S1; see Supplementary Material) and high performance
for both regression and classification problems. As shown in
Figs. 2(b)–2(d), the absolute mean error of testing data set is
2.203 nm for diameter, 2.224 nm for period, and 0.417 nm
for the thickness of the Au film. The relative mean error shown
in Fig. 2(e) reaches 0.37% for diameter, 0.26% for period, and
0.86% for the thickness of the Au film. Among all 525 sets of
testing data, 500, 474, and 517 sets exceed 98% accuracy for
diameter, period, and thickness of Au film, as seen in Table 1.
Here the accuracy is defined as

accuracy =
�
1 −

jV true − Vpredictionj
V true

�
× 100%, (1)

where V ture is the true value of the structure parameters, while
Vprediction means the predicted value given by DNNs.
Furthermore, when it comes to the classification problems,

the trained DNN can perfectly distinguish nanohole and nano-
pillar structures with an accuracy of 100%. In order to demon-
strate the accuracy, we select a set of data with a slightly higher
error than the mean value by simulating the spectrum of the
DNN-predicted device parameters and comparing it with the
original true spectrum [Fig. 2(f) and Table S2 (see
Supplementary Material)]. We can see the two spectra are
almost identical, with a mean squared error of 4.364 × 10−4.
Next, we simulate the more complex case where plasmonic

device may be packaged by a protective dielectric coating. We
add a layer of transparent dielectric materials on the Au plas-
monic device, as shown in Fig. 1(e), including UV-curable opti-
cal adhesive NOA63, polymethyl methacrylate (PMMA),
Microchem SU-8 photoresist, MgF2, and SiO2. The new data
set consists of 7350 sets of simulated data. The DNN2 model
is shown in Fig. S2(a) (see Supplementary Material) with five
neurons in the output layer. As shown in Figs. S2(b)–S2(d)
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(see Supplementary Material), after 1000 epochs of training, the
absolute error of the testing data set is 4.148 nm for diameter,
3.865 nm for period, and 0.273 nm for Au thickness. The relative
errors shown in Fig. S2(e) (see Supplementary Material) are
0.72% for diameter, 0.43% for period, and 0.44% for the thick-
ness of the Au film. As shown in Table 1, among 735 sets of test-
ing data, there are 674, 735, and 712 sets exceeding 98% accuracy
for diameter, period, and thickness of the Au film. The accuracy
is slightly decreased for diameter and period. For classification
problems, the accuracy is 100% for distinguishing between
nanohole and nanopillar structures and 99.61% for identifying
the five kinds of dielectric materials (only one set of data was
identified incorrectly). We also plot a set of data so that the
DNN has a slightly higher prediction error than the mean value
and compare the spectra of the characterized structure and the
real structure in Fig. S2(f) and Table S2 (see Supplementary
Material), which shows a mean squared error of 9.286 × 10−4.

In a real application scenario, the refractive index of the
dielectric coating or immersed solution is not specific, and
the plasmonic materials are not limited to Au. Therefore, we
consider multiple plasmonic metals of Au, Ag, and Al, and
the refractive index of the coating or immersion layer varies
from 1 to 3 with a step size of 0.25. The new data set consists
of 39,690 sets of simulated data. As shown in Fig. 3(a), the output
layer of DNN3 now has six parameters. After 600 epochs of
training, the loss curves remain basically stable (Fig. S1; see
Supplementary Material). As shown in Figs. 3(b)–3(e), the abso-
lute error of the testing data set is 2.203 nm for diameter,
2.224 nm for period, 1.057 nm for thickness of the metal film,
and 0.003 for the refractive index of the dielectric layer. The rel-
ative error shown in Fig. 3(f) reaches 0.97% for diameter, 0.56%
for period, 0.18% for refractive index of the dielectric layer, and
2.46% for the metal thickness. Among 3960 sets of testing data,
there are 3415, 3829, 3413, and 3925 sets showing accuracy over

Fig. 1. Schematic diagram of the nanostructure characterization process and studied parameters. (a) Process flow of nanostructure characterization process;
(b) periodic nanohole and nanopillar plasmonic nanostructure formed by nanoimprint lithography on glass substrate; (c) representative SEM images of the
experimental samples of (b); (d) Au, Ag, and Al metal films evaporated on the structures; (e) dielectric coating covered on the structures to be identified
for its refractive index.
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Fig. 2. Results of DNN1. (a) The architecture of DNN1. The input layer has 201 neurons and the output layer has four neurons; there are five hidden layers.
(b)–(d) The absolute error of the testing data set, where (b) is for diameter, (c) is for thickness, and (d) is for period. (e) Relative error of the testing
data set; (f) example of two transmission spectra of the real structure and the predicted structure, with an MSE slightly higher than the mean value.

Table 1. Statistics of Characterization Error Distribution of DNNs.

Regression Problems Classification Problems

Parameters

Accuracy

Parameters Truth> 90% > 95% > 98%

DNN1
Data size: 525

Diameter 525 517 500 Structure type 525

Period 525 523 474

Thickness 525 519 517

DNN2
Data size: 735

Diameter 735 727 674 Structure type 735

Period 735 735 735 Dielectric coating 727

Thickness 729 727 712

DNN3
Data size: 3969

Diameter 3966 3857 3415 Structure type 3950

Period 3969 3951 3829 Metal type 3805

Thickness 3621 3523 3413

Refractive index 3941 3933 3925

DNN4
Data size: 4008

Diameter 3992 3842 3265 Structure type 3997

Period 3993 3957 3784 Metal type 3822

Thickness 3596 3441 3261 Data type 4008

Refractive index 3981 3947 3903
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98% for predicting diameter, period, thickness of metal film, and
refractive index of dielectric layer (Table 1). The mean squared
error of a typical characterized structure’s spectrum is
5.412 × 10−4, as shown in Fig. 3(g) and Table S2 (see
Supplementary Material). For classification problems, the accu-
racy is 99.89% for distinguishing between nanohole and nano-
pillar structures and 96.8% for identifying Au, Ag, and Al. The
characterization accuracy is slightly worse than the previous net-
works. The reason is attributed to the nonuniqueness problem

encountered for increased output parameters and exponentially
enlarged solution space[28]. We noticed that around 0.1% of the
data groups’ output had very different device parameters with a
highly similar spectrum (MSE less than 10−4) to the true struc-
ture. This small fraction of nonunique mapping caused a
decrease of average accuracy.
For practical applications, we aim to characterize or identify a

real plasmonic structure from its experimental spectrum.
However, fabricating and collecting thousands of groups of

Fig. 3. Results of DNN3. (a) The architecture of DNN3. The input layer has 201 neurons and the output layer has six neurons; there are five hidden layers. (b)–(e) The
absolute error of the testing data set, where (b) is for diameter, (c) is for thickness, (d) is for period, and (e) is for the dielectric coating refractive index. (f) Relative
error of the testing data set; (g) example of two transmission spectra of the real structure and the predicted structure, with an MSE slightly higher than the mean
value.
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experimental data for DNN training is a massive project, which
can consume a long time and a big cost. Here in this work, we
propose to collect a small portion of experimental spectra and
mix them with simulated data for training and identifying the
real nanostructures. We use soft nanoimprint lithography to
fabricate 384 different plasmonic nanostructures with different
metal, metal thickness, diameter, period, and dielectric coating,
and measure their corresponding transmission spectra. Figures
S3 and S4 (see Supplementary Material) show multiple sample
images taken by an SEM; one typical nanohole and nanopillar
structure is shown in Fig. 4(b). Figure 4(c) shows the experimen-
tal and simulated transmission spectra of the four samples,
respectively. Most of the experimental and simulated transmis-
sion spectra for the same structural parameters resemble similar
resonance features, while the spectral details are different, as the
nanoimprinted samples show unavoidable defects and do not
have a perfectly round shape, as those in simulations.
We mix this small set of experimental data (384 groups) with

the large simulated data pool (39,690 groups) to form a mixed
training data set (40,074 groups). We use a similar DNN4,
shown in Fig. 4(a), with a new parameter of data type in the out-
put layer to distinguish the experimental and simulated data
type. After the training is done, we also use 10% of the data
for testing. As shown in Figs. 4(d) and 4(e), the absolute error

of the total testing data set is 7 nm for diameter, 6.46 nm for
period, 1.3 nm for the thickness of the metal film, and 0.0028
for the refractive index of the dielectric layer. Specifically for
experimental testing results, the error is 20.03 nm for diameter,
34.03 nm for period, 1.1 nm for the thickness of the metal film,
and 0.004 for the refractive index of the dielectric layer. The rel-
ative error of the total testing data set is 1.25% for diameter,
0.72% for period, 3.05% for metal film thickness, and 0.27%
for the refractive index of the dielectric layer, while the experi-
mental part is 3.01% for diameter, 3.05% for period, 3.43% for
the thickness of themetal film, and 2.58% for the refractive index
of the dielectric layer. It is worthmentioning that the accuracy of
classification problems reaches 100% for experimental data,
which means the DNN can accurately identify the metal type
and the structure type, as well as the data type. Here, we want
to point out that DNN is not accurate enough to recognize
the geometric parameters such as diameter and period of the
experimental data. The reason is attributed to the error associ-
ated in SEM characterization with blurred edge and imperfect
shape and size variation over the whole device [Fig. 4(b) and
Figs. S3, S4 (see Supplementary Material)]. The approximate
measurement error can range between 20 and 50 nm. If the
experimental training data are not sufficiently accurate, it can
lead to an incorrect mapping between input and output data.

Fig. 4. Results of DNN4. (a) The architecture of DNN4. The input layer has 201 neurons and the output layer has seven neurons; there are five hidden layers. (b) SEM
images of nanohole and nanopillar structures prepared by nanoimprint lithography; (c) comparison of the experimental and simulated spectra; the yellow line
indicates that the dielectric layer material is SU8, while the blue one indicates the air. (d) The absolute error of the testing data set; the top is the experimental
data group, and the bottom is the total mixed data. (e) The relative error of the testing data set; the top is the experimental data, and the bottom is the total mixed
data. (f) Statistics of the number of predictions that successfully identify the data type (experimental or simulated), structure type (nanohole or nanopillar), metal
type, metal film thickness, and refractive index of dielectric layer collected for experimental data.
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With such experimental data limitation, we also attempted
the transfer learning method described in relevant works[29].
By fixing the parameters of the hidden layers except the last
one of the DNN trained by the simulation data, the transfer
learning results of experimental data in the last layer are not sat-
isfactory. However, the good accuracy of identifying structure
type, metal type, metal thickness, and dielectric refractive index
indicates the mixed data training model has great possibilities
for application for characterizing material property that SEM
or AFM tools are not capable of, or advanced material charac-
terization tools can not easily access. Figure 4(f) shows the sta-
tistics of experimental characterization results of the data type
(experimental or simulated), structure type (nanoholes or nano-
pillars), metal type, metal film thickness, and the refractive index
of the dielectric layer, which all exhibit high accuracies. The cri-
terion for judging whether the metal film thickness and refrac-
tive index of the dielectric layer are accurately identified is
whether the predicted value is closest to the target one.
Therefore, DNN can characterize the real device material prop-
erty by mixed data training. In order to achieve accurate iden-
tification of both geometric and material parameters of a
plasmonic nanostructure, we still need to seek a combination
of DNN and conventional microscopic characterization, where
materials property and geometric property can be identified sep-
arately. This method is worth exploration, as the nanostructure
characterization of material composition and thickness is usu-
ally the most challenging. In this work, we only use a laptop
whose CPU is i7-10750H and GPU is RTX 2070 for simulation
and training DNNs. All the 39,690 sets of simulation data col-
lection take about 800 hours. The 384 sets of experimental data
collection take another two weeks’ time. When it comes to DNN
training, even the most complex DNN just took tens of minutes.
Once the one-time DNN training is finished, by just measuring
the device transmission spectrum in a couple of minutes, nano-
structure characterization for metal type, thickness, dielectric
coating, and refractive index can be performed by DNN in just
a few milliseconds. On the other hand, conventional advanced
characterization for material composition, film thickness, and
refractive index is very tedious, and it usually takes hours to days
to complete one sample preparation and characterization, pro-
vided that those expensive tools are available.

3. Conclusion

In order to characterize multiple geometric andmaterial proper-
ties of the plasmonic nanostructure, we have trained four DNNs
with different complexity for different device application scenar-
ios. As the characterizing parameter increases, the general rec-
ognition accuracy of diameter and period decreases. We have
also reported the network training by a mixture of experimental
and simulated data, and the resulting DNN can yield an accurate
material characterization. The metal type and thickness, struc-
ture, data type, dielectric coating, and refractive index can all be
identified accurately. Our results indicate the ease of

experimental data acquisition burden for DNN training, and
the potential of computational structural characterization.

4. Methods

4.1. Device fabrication

The pattern is replicated using UV-assisted nanoimprinting
(UV-NI) to imprint the PDMS stamp nanostructures onto a
glass substrate coated with UV-curable resist (NOA 63).
While maintaining the pressure, the resist is cured under UV
irradiation, producing nanostructures with imprint depth.
Then a thin layer of metal (Au, Ag) is deposited on the replicated
pattern using electron beam evaporation. Lastly, a layer of
dielectric coating such as SU8 photoresist is spin-coated as pro-
tective dielectric coating at a speed of 3000 r/min.

4.2. Training process of DNNs

Our networks are built using Keras. The training process uses
Adamax as the optimizer, MAE as the loss function, and the
ReLU as the activation. MAE is defined as

errorMAE =
1
m

Xm
i=0

jyi − ŷij, (2)

where ŷ is the predicted value. The normalization function used
in preprocessing is the standard scaler, and the transformation
function is

x
�
=
x − μ

σ
, (3)

where μ is the mean of the training samples and σ is the standard
deviation of the training samples.

4.3. Simulations

Simulations of the transmission spectra were performed by
using a simulation tool based on the FDTD method.
Simulations were performed with a plane wave under normal
incidence.

4.4. Optical characterization

The SEM images of the fabricated samples were taken under a
high-resolution SEM (S-4800, Hitachi). The optical transmis-
sion spectra were measured under the normal incidence using
a PE UV-Vis spectrophotometer (LAMBDA 650S).
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