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Multiple object tracking (MOT) in unmanned aerial vehicle (UAV) videos has attracted attention. Because of the observation
perspectives of UAV, the object scale changes dramatically and is relatively small. Besides, most MOT algorithms in UAV
videos cannot achieve real-time due to the tracking-by-detection paradigm. We propose a feature-aligned attention net-
work (FAANet). It mainly consists of a channel and spatial attention module and a feature-aligned aggregation module. We
also improve the real-time performance using the joint-detection-embedding paradigm and structural re-parameterization
technique. We validate the effectiveness with extensive experiments on UAV detection and tracking benchmark, achieving
new state-of-the-art 44.0 MOTA, 64.6 IDF1 with 38.24 frames per second running speed on a single 1080Ti graphics process-
ing unit.
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1. Introduction

Object detection and tracking have been crucial concerns in the
2D[1,2] and 3D[3,4] vision community. Multiple object tracking
(MOT) aims to analyze videos to identify and track objects.
Because of the flexibility of unmanned aerial vehicles (UAVs)
equipped with cameras, MOT in UAV videos has become a
new research hotspot and trend in recent years.
Online MOT algorithms can be reduced to the two-step and

one-shot approaches. The two-step approach[1,2] mainly follows
the tracking-by-detection (TBD) paradigm[5]. It formulates the
MOT task as two steps of object detection and data association.
The one-shot approach[6,7] joints detection and embedding
learning, and does not separate the re-identification (Re-ID)
model as usual in TBD. As of now, almost all UAV-based
MOT algorithms adopt the TBD paradigm. Different from
the common observation perspectives in MOT, such as fixed
security cameras and moving cars, MOT in UAV videos must
pay more attention to the following challenges. (1) Scale changes
and small objects: the flight altitude of the UAV changes with
time, and the object scale varies greatly at different altitudes.
Because of the wide field of view and high altitude, the objects
are usually small. (2) Real-time performance: MOT in UAV vid-
eos needs to locate fast moving ground objects, so algorithms
should be fast enough to be used in industrial applications.
Previous efforts have been made to solve these problems.

IPGAT[8] predicts complex motions using a conditional

generative adversarial networks model. However, it neglects
to utilize multi-scale appearance information of an object.
M-CMSN-M[9] unifies single object tracking and MOT for
multi-task learning using a Siamese network. Nevertheless,
the speed of M-CMSN-M[9] is extremely slow due to the numer-
ous objects in UAV videos.
In this Letter, we are committed to coping with both afore-

mentioned problems simultaneously. To address the problem
of scale changes, we design a feature-aligned attention network
(FAANet), which is mainly composed of twomodules: the chan-
nel and spatial attention (CSA) module and feature-aligned
aggregation (FAA) module. The CSAmodule adaptively enhan-
ces multi-scale features, and the FAA module successively gen-
erates alignment bias of two different resolution features.
FAANet integrates multi-scale features to improve the robust-
ness of object scale changes. To address the problem of real-time,
we adopt the joint-detection-embedding (JDE) paradigm[6] and
adopt the structural re-parameterization technique[10] to
increase the network inference speed.
The major contributions of this paper are summarized as fol-

lows. (1) We propose an FAANet to enhance and aggregate
multi-scale features so as to cope with drastic scale changes in
UAV videos. (2) We introduce the JDE paradigm to MOT in
UAV videos and use the structural re-parameterization tech-
nique to increase the network inference speed. (3) Extensive
experiments are conducted on UAV detection and tracking
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(UAVDT)[9] benchmarks to verify effectiveness of the proposed
method.

2. Methods

In this section, we first present the architecture of the proposed
FAANet and then explain the details of the CSA module, FAA
module, and online inference.

2.1. Overview

As shown in Fig. 1, the framework of proposed FAANet contains
four components: feature extractor backbone, feature fusion
neck, detection and Re-ID prediction heads, and online tracking
association. We adopt RepVGG[10] as our backbone to extract
multi-scale features with minor modifications to their channels
and layers. Let the shape of the input image be 3 ×H input ×
Hinput; then the shape of multi-scale output features is, respec-
tively, Ci × Hi ×Wi, where Ci = 64 × 2i−1, Hi = Hinput=2i�1,
Wi =W input=2i�1, and i = 1, 2, 3, 4. We adopt the same detec-
tion and Re-ID heads as FairMOT[7], including heat map, box
size, center offset, and Re-ID embeddings.

2.2. Channel and spatial attention module

In general, the input and output dimensions of the channel
attention (CA) or spatial attention (SA) are the same[11,12]. In
order to improve real-time performance and reduce the risk

of overfitting, we propose a method combining feature dimen-
sion reduction, channel attention, and spatial attention, as
shown in Fig. 2. We perform channel attention first, and then
spatial attention. We refer to the effective channel attention
mechanism[11] and modify it by 2D 1 × 1 convolution and one-
dimensional convolution with variant kernel and stride.
Specifically, let the one output of the backbone be

F ∈ RC×H×W , whereC,H, andW are channel dimension, height,
and width. Accordingly, the weights of channels can be com-
puted as

wchannel = σ�Conv1d�g�F���, (1)

where g�F� = 1
WH

PW,H
i,j=1 Fi,j is the channel-wise global average

pooling (GAP), and σ is the sigmoid nonlinear activation func-
tion. We set the Conv1d with a kernel as 3, 7, 11, 15 and stride as
1, 2, 4, 8, respectively, in four multi-scale features. In this way,
all channel dimensions of multi-scale features can be reduced to
64. Subsequently, the output of channel attention can be
computed as

Fchannel = wchannel ⊙ Conv2d�F� � Conv2d�F�, (2)

where ⊙ denotes element-wise product. The output dimension
of Conv2d�1 × 1� is 64. Specially, for i = 1, C = 64, we replace
Conv2d�1 × 1� with an identity function.
In contrast to channel attention, which focuses on channel

dimension, spatial attention mainly focuses on the height and
width dimension. Inspired by polarized self-attention[12], we

Fig. 1. Architecture of our tracker FAANet tracking framework. This framework contains four components: backbone (RepVGG), neck (CSA + FAA), head (Re-ID +
detection), and association.

Fig. 2. Architecture of CSA module.
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also adopt the polarized method to perform spatial attention.
Specifically, let the output of channel attention be Fchannel ∈
R64×H×W , so the spatial weights can be computed by the follow-
ing formulas:

F1 = softmax�f 1�g�Conv2d�Fchannel����, (3)

F2 = f 2�Conv2d�Fchannel��, (4)

wspatial = σ�f 3�F1 ⊗ F2��, (5)

where f 1, f 2, and f 3 denote different reshape operation, and
softmax�·� denotes the softmax function. After calculating the
spatial weights, the final output of the CSA module can be
computed as

Fspatial = wspatial ⊙ Fchannel, (6)

Foutput = Fchannel � Fspatial: (7)

Because the channel attention adopts one-dimensional con-
volution instead of the full connection as usual, the number
of parameters is greatly reduced, and the inference speed is
improved. The number of channels is reduced to 64 dimensions
through the proposed CSA module, which also reduces the
number of parameters for real-time performance and provides
a channel consistent input to the FAA module.

2.3. Feature-aligned aggregation module

Traditional multi-scale feature aggregation usually adopts the
method of bi-linear interpolation up-sampling and element-size
summation. However, because of the feature misalignment, fea-
ture degradation will occur, which leads to the degradation of
the ability to locate objects at different scales. After our meticu-
lous research, we refer to the feature-aligned mechanism in
AlignSeg[13] and apply it to the UAV-based MOT domain.
The FAA module is shown in Fig. 3. Specifically, let the cor-

responding two outputs of the CSA module be Fhigh ∈ R64×H×W

and F low ∈ R64×�H=2�×�W=2�, where Fhigh and F low, respectively,
denote the feature map with high and low resolution. The net-
work will learn to generate the offsets of two feature maps for
alignment. Let the corresponding two offsets be Δhigh ∈
R64×H×W andΔlow ∈ R64×�H=2�×�W=2�; then they can be computed
by the following formulas:

Fconcat = Concat�upsample�F low�,Fhigh�, (8)

Δlow = Conv2d3×3�ReLU�BN�Conv2d1×1�Fconcat����, (9)

Δhigh = Conv2d3×3�ReLU�BN�Conv2d1×1�Fconcat����, (10)

where Concat�F,F� denotes the concatenation operation of two
feature maps along the channel dimension, upsample�F�
denotes the bilateral interpolation function, Conv2d3×3 and
Conv2d1×1 denote the convolution layer with 3 × 3 and 1 × 1
kernels, and ReLU and BN, respectively, denote the rectified lin-
ear unit activation function and batch normalization layer. Let
the output of the FAA module be Foutput; then Foutput can be
computed as

Foutput = f �upsample�F low�,Δlow� � f �Fhigh,Δhigh�, (11)

where f �F,Δ� is defined in AlignSeg[13]. It can be described like
this: supposeAh,w is the output of the alignment function f �F,Δ�
in the spatial coordinates for position �h,w�; then Ah,w can be
computed as

Ah,w =
XH

h 0=1

XW

w 0=1

Fh 0 ,w 0 · max�0,1 − jh� Δ1 hw − h 0j�

· max�0,1 − jw� Δ2 hw − w 0j�, (12)

where Δ1 hw and Δ2 hw indicate the learned 2D transformation
offsets for position �h,w�.

2.4. Online inference

Herein, the two important components of online inference are
data association and structural re-parameterization, which we
will illustrate further.
We follow the standard online tracking algorithm to associate

boxes. As shown in Fig. 4, we first initialize a few tracklets based
on the estimated boxes in the first frame and use a Kalman filter
to predict the locations of the tracklets in the next frame. We
perform two Hungarian matchings between detections and
tracklets sequentially. The first matching considers the appear-
ance information (Re-ID embedding) measured by cosine dis-
tance and the motion information measured by Mahalanobis
distance. The second matching only considers intersection over
union (IOU) distance, which is simple but useful. Finally, we

Fig. 3. Architecture of FAA module. Fig. 4. Procedure of association between detections and tracklets.
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initialize new tracklets that meet confidence thresholds and
mark the lost tracklets.
Structural re-parameterization is used in RepVGG[10] to

decouple a multi-branch topology with a plain architecture.
Herein, we also utilize structural re-parameterization to increase
the backbone network inference speed. As shown in Fig. 5,
during the training phase, multi-branch topology is adopted to
avoid the problem like gradient vanishing. After training, we
perform the transformation with simple algebra in RepVGG[10]

and save the plain backbone architecture for online inference.

3. Experiment

3.1. Datasets and metrics

We evaluate our method on the dataset UAVDT[9]. The dataset
offers 50 sequences recorded from a UAV (60% for training and
40% for testing). We compare our method with various classic
and recent algorithms on the testing sequences. We use multiple
metrics, including MOT accuracy (MOTA), identification F1
score (IDF1), MOT precision (MOTP), mostly tracked targets
(MT), mostly lost targets (ML), false positive (FP), false negative
(FN), identification switches (IDS), and fragmented (FM) to
evaluate different aspects of the tracking performance. MOTA
is computed based on FP, FN, and IDS. Considering the amount
of FP and FN is larger than that of IDS, MOTA focuses more on
the detection performance. IDF1 focuses more on the associa-
tion performance.

3.2. Implementation details

We choose RepVGG[10] as our backbone. Its weights are initial-
ized by the ImageNet-pretrained model. Specifically, we choose
a slightly modified RepVGG-B0 as our default backbone, which
has [2,4,6,16] blocks and [64,128,256,512] output channels. Our
model is trained and tested on a NVIDIA GEFORCE
RTX 1080Ti graphics processing unit. We adopt standard data
augmentation techniques including scaling, rotation and color
jittering. The input image is resized to 1024 × 544, and the fea-
ture map resolution is 256 × 136. We choose Adam as
our optimizer. We set the starting learning rate as 8 × 10−5

and batch size as 10. The learning rate will decrease by a factor
10 per 15 epochs. The training step takes about 18 h with 35
epochs in total.

3.3. Experiment analysis

We evaluate our FAANet together with various classic and
recent algorithms including CEM[14], CMOT[15], SORT[1],
DeepSORT[2], GOG[16], IOUT[17], MDP[18], SMOT[19],
DeepAlign[20], SBMA[21], IPGAT[8], M-CMSN-M[9], and
Quadruplet[22]. All the results of the comparison algorithms
are obtained from recent published papers and the UAVDT
benchmark[9].
Since most of the current UAV-basedMOT algorithms follow

the TBD paradigm, many algorithms do not publish their own
speed or only publish the speed of the association phase. That
leads to difficulty and ambiguity in speed comparison of algo-
rithms. As much as we can, we collect the currently publicly
available algorithm speed and performance, which are shown
in Fig. 6. Note that the three algorithms in comparison only cal-
culate the time consumption in the association phase. It can be
observed that the speed of our FAANet is 60 times higher than
that of the current state-of-the-artM-CMSN-M[9], whileMOTA
and IDF1 are slightly ahead. Detailed comparison between algo-
rithms is shown in Table 1. We list the seven kinds of the most
excellent trackers in recent years. We have the best performance
on the 7 out of 10 metrics.
The comparison based on scene attributes is shown in Fig. 7.

Our algorithm performs better than other algorithms in the
high-alt, bird-view, and fog scenes. It demonstrates the effective-
ness of the proposed module.

3.4. Ablation experiments

To validate the effectiveness of CA, SA, and FAA modules, we
introduce a baseline RepVGG-B0 with a re-parameterization
technique. The baseline reduces the feature dimension by 1 ×
1 convolution and performs multi-scale fusion by bi-linear
interpolation up-sampling and element-size summation.
Except for the above, all the other settings are consistent, such
as training hyperparameters and association details in tracking.
As shown in Table 2, the contributions of CA and SA are similar,

Fig. 5. Structural re-parameterization of a RepVGG block.

Fig. 6. MOTA-IDF1-FPS comparison with other UAV-based MOT trackers on the
UAVDT test dataset. The horizontal axis is FPS, the vertical axis is MOTA, and the
radius of the circle is IDF1.
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but their combination can lead to better performance.
Compared with CSA, FAA improves more IDF1, which may
be due to the feature-aligned multi-scale aggregation boosting
robustness to small objects and scale changes.
As shown in Table 3, we illustrate the speed improvement of

the re-parameterization technique. It decreases the number of
model parameters from 15.9 × 106 to 14.4 × 106 and the amount
of floating-point operations (FLOPs) from 62.3 × 109 to 58.3 ×
109. Generally, it increases frames per second (FPS) from 30.32
to 38.24. This is a 26% speed improvement without degeneration
of any accuracy performance.

3.5. Visualization results

Figure 8 visualizes several typical scenes tracking comparison
results between DeepSORT[2] and FAANet on the UAVDT[9]

test dataset. From the results of M0403, M1301, and M1004,
we can see that FAANet can better track small objects at the
end of the road, which is caused by the wide field of vision.
From the results of M0701, we can see that FAANet performs
better in scenes of scale changes, which is caused by flight
altitude.
The vertical numbers denote the number of objects tracked in

the three frames. On average, FAANet can track 29% more
objects than the classical DeepSORT[2] method in the four typ-
ical scene examples. This is mainly attributed to the multi-scale
feature enhancement and fusion of the CSA and FAA modules.

Table 2. Evaluation of the Critical Factors in FAANeta.

RepVGG-B0 CA SA FAA MOTA ↑ IDF1 ↑ FPS ↑

p
38.2 56.8 45.70

p p
39.7 59.2 43.52

p p
39.3 59.4 43.41

p p p
40.4 60.2 41.35

p p
42.1 63.7 40.54

p p p p
44.0 64.6 38.24

aThe best performers are highlighted in bold.

Table 3. The Improvement of Re-parameterization Technique.

Rep Params (106) FLOPs (109) MOTA ↑ IDF1 ↑ FPS ↑

15.9 62.3 44.0 64.6 30.32
p

14.4 58.3 44.0 64.6 38.24

Table 1. Results of a Quantitative Comparison among Classic MOT Methods and Recent UAV-Based Methods on the UAVDT Test Dataseta.

MOT Methods Year Framework MOTA ↑ IDF1 ↑ MOTP ↑ MT ↑ ML ↓ FP ↓ FN ↓ IDS ↓ FM ↓ FPS ↑

SORT[1] 2016 Faster RCNN 39.0 43.7 74.3 33.9 28.0 33,037 172,628 2350 5787 Nan

DeepSORT[2] 2017 Faster RCNN 40.7 58.2 73.2 41.7 23.7 44,868 155,290 2061 6432 15.01

DeepAlign[20] 2018 Faster RCNN 41.6 49.0 73.3 43.7 24.3 45,420 152,224 1546 3733 0.23

SBMA[21] 2019 LSTM 38.6 48.5 72.1 38.9 24.4 44,724 160,950 3489 11,796 Nan

IPGAT[8] 2020 LSTM + CGAN 39.0 49.4 72.2 37.4 25.2 42,135 163,837 2091 10,057 Nan

M-CMSN-M[9] 2020 Faster RCNN 43.1 62.6 73.5 45.3 22.7 45,900 147,638 390 4259 0.64

Quadruplet[22] 2021 Faster RCNN 40.3 55.0 74.0 Nan Nan 30,065 150,837 1091 3057 Nan

FAANet Nan RepVGG + JDE 44.0 64.6 77.9 47.9 22.6 57,146 133,496 403 7202 38.24

aThe best performers are highlighted in bold.

Fig. 7. IDF1 comparison with other UAV-based MOT trackers on the UAVDT test
dataset based on scene attributes. The IDF1 of FAANet is marked outside the
circle.
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4. Conclusions

In this Letter, we propose an FAANet for MOT in UAV videos.
Experimental results demonstrate that our methods can
better cope with the problem of scale changes and small object
with real-time speed. We hope that our method is attractive
for application to industry due to its high accuracy and
fast speed.
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