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Probabilistically shaped (PS) high-order quadrature amplitude modulation (QAM) signals are attractive to coherent optical
communication due to increased spectral efficiency. However, standard digital signal processing algorithms are not optimal
to demodulate PS high-order QAM signals. Therefore, a compromise equalization is indispensable to compensate the
residual distortion. Meanwhile, the performance of conventional blind equalization highly depends on the accurate ampli-
tude radius and distribution of the signals. The PS high-order QAM signals make the issue worsen because of indistinct
amplitude distributions. In this work, we proposed an optimized blind equalization by utilizing a peak-density K-means clus-
tering algorithm to accurately track the amplitude radius and distribution. We experimentally demonstrated the proposed
method in a PS 256-QAM coherent optical transmission system and achieved approximately 1 dB optical signal-to-noise ratio
improvement at the bit error rate of 1 × 10−3.
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1. Introduction

Digital coherent transceivers and complex modulation formats
have further advances in optical fiber communications. High-
order quadrature amplitude modulation (QAM) coherent opti-
cal communications have potential with high spectral efficiency
for large-capacity transmission and have been demonstrated in
lab experiments and field trials[1–3]. Meanwhile, probabilistic
shaping has been utilized by reason of adaptable rate flexibility
and superior energy efficiency[4–7]. However, the conventional
well-developed digital signal processing (DSP) algorithms for
uniform low-order QAM signals face some challenges in the
probabilistically shaped (PS) high-order QAM signals, and it
is indispensable to optimize the conventional DSP algorithm
for achieving desired performance.
Updated DSP algorithms for PS QAM signals have been

investigated in clock recovery, frequency offset compensation,
carrier phase recovery, and channel equalization[8–11]. In order
to improve the sensitivity of a conventional Gardner timing
error detector (G-TED), the modified G-TED algorithm balan-
ces the effect of PS magnitude and pulse roll-off factor[8]. Two
blind frequency offset estimation (FOE) algorithms, i.e., the
radius directed fourth power algorithm and generalized circular
harmonic expansion algorithm, were proposed to blindly esti-
mate the frequency offset in the PS QAM coherent optical com-
munication systems more accurately[9]. For the sub-optimal

issue of the blind phase search algorithm in the PS QAM signals,
a supervised phase search has been proposed by estimating
mean square error in the first stage to yield a noise rejection win-
dow[10]. In addition, blind radius directed equalizer (RDE)
with likelihood-based selection was proposed to improve the
tolerance to the impairments caused by polarization mode
dispersion[11]. In the abovementioned DSP algorithms, blind
equalization techniques are significant to compensate the signals
distortion. The conventional blind dynamic channel equaliza-
tion algorithms, such as cascaded multi-modulus algorithm
(CMMA) and RDE, have the issue of amplitude dependence,
as mentioned in Ref. [12]. Meanwhile, the probabilistic shaping
with low entropy slightly affects standard amplitude radius and
amplitude distribution. Hence, the fluctuating amplitude distri-
bution caused by the imperfection of the transceiver, such as in-
phase and quadrature (IQ) amplitude imbalance, IQ phase
imbalance, and IQ skew, always degrades the performance of
equalization algorithms.
In this paper, we propose a peak-density K-means clustering

algorithm to mitigate the effect of signals’ amplitude variation
on blind channel equalization. Here, the number of clusters,
i.e., the number of the high-order QAM signals’ amplitude lev-
els, is first identified by calculating the peak density and tagging
the pre-selected centroids of each cluster in the signals’ ampli-
tudes after clock recovery. Then, the K-means algorithm exploits
the tagged centroids and the number of clusters to further realize
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clustering of signals’ amplitude levels. Assisted by the yielded
cluster centroids and the classification boundary of signals’
amplitude levels, the optimized blind equalization algorithms
can yield the accurate amplitude radius and amplitude distribu-
tion for superior performance. We experimentally demon-
strated the proposed method in the PS 256-QAM coherent
optical transmission over 80 km standard single-mode fiber
(SSMF) and achieved approximately 1 dB optical signal-to-noise
ratio (OSNR) improvement at the bit error rate (BER)
of 1 × 10−3.

2. Principle of the Method

Blind dynamic channel equalization is indispensable in coherent
optical communication to compensate various impairments,
and the constant modulus algorithm (CMA) is widely utilized
for quadrature phase shift keying (QPSK) signals. Figure 1(a)
shows the butterfly structure of the CMA with four multi-tap
finite impulse response (FIR) filters to include the interaction
of multiple adjacent symbols. For high-order QAM signals,
multiple reference amplitude radii are introduced to reduce
residual errors, commonly used in the RDE and CMMA, as
shown in Fig. 1(b).
The outputs of equalizer EX,Y in Fig. 1(a) can be obtained

as[13,14]

EX�n� = h�xx�n�Ex�n� � h�xy�n�Ey�n�,
EY�n� = h�yx�n�Ex�n� � h�yy�n�Ey�n�, (1)

where �:�� represents the conjugate operation, and Ex,y is the N
adjacent symbols prior to the nth input symbol. The row vectors
hxx, hxy, hyx, hyy containing the N tap weights are optimized
based on the stochastic gradient descent algorithm, given by

hxx�n� 1� = hxx�n� � μεx�n�EX�n�E*x �n�,
hxy�n� 1� = hxy�n� � μεx�n�EX�n�E*y �n�,
hyx�n� 1� = hyx�n� � μεy�n�EY�n�E*x �n�,
hyy�n� 1� = hyy�n� � μεy�n�EY�n�E*y �n�, (2)

where μ is the adaptation step. The errors εx,y of RDE and
CMMA are defined as

εx,y−RDE = R2
k�n� − jEX,Y�n�j2,

εx,y−CMMA = �jjjEX,Y�n�j − Rref1j − Rref2j − Rref3�
· sign�EX,Y�n�� · sign�Rref1 − jEX,Y�n�j�
· sign�Rref2 − jRref1 − jEX,Y�n�jj�
· sign�Rref3 − jRref2 − jRref1 − jEX,Y�n�jjj�, (3)

where sign is the symbolic function, and j · j represents themod-
ulo operation. Taking the 16-QAM signal as an example, Rk is
the standard amplitude radius, denoted as R1, R2 and R3 in
Fig. 1(b). Rref in Eq. (3) is defined as

Rref1 = �R1 � R2�=2,
Rref2 = �R3 − R1�=2,
Rref3 = �R3 − R2�=2: (4)

The error of RDE is akin to the Euclidean distance between
the data and the standard amplitude radius Rk, while the error
of CMMA is akin to the multi-level referenced amplitude radius
Rref . Both depend on the accuratemeasurement of the amplitude
radius. For example, the decision of the amplitude is defined as
�Rk−1 � Rk�=2 in the RDE, as shown by red dash-dotted curves
in Fig. 1(b), where D is described as the decision region of the
amplitude. However, the signal distortion and noise will muddle
up the amplitude distribution, and it is challenging to find an
accurate standard amplitude radius and referenced amplitude
radius in such an indistinct amplitude diagram.
For high-order PS QAM signals, the abovementioned issue

becomes more critical. Fortunately, the symbols with lower
energy are robust to various noises, and, therefore, the inner
amplitude distribution in the amplitude diagram is more dis-
tinct. Thus, multiple inner amplitude rings can be extracted for
error feedback to improve accuracy of the equalizer. However,
probabilistic shaping makes more data concentrated in the
interior, which causes more uneven amplitude distribution,
and the standard amplitude radius will also have a slight offset.
Besides, the standard amplitude radius is also influenced by the
addition of pilot symbols and the transceiver imperfection. The
pilot symbols with lower-order modulation will reduce the
information entropy of probability shaping signal, thus slightly
changing the standard amplitude radius and amplitude distribu-
tion[12]. The imperfection of the transceiver including the IQ
amplitude imbalance, IQ phase imbalance, and bias drifting
of themodulator will also change the standard amplitude radius.
In order to enhance the robustness of the conventional blind

equalizers for the PS high-order QAM signals and mitigate the
effect of indistinct amplitude distribution caused by various deg-
radations, we utilize a peak-density K-means clustering algo-
rithm to find the accurate amplitude radii and implement the
precise amplitude decision. Here, the peak density is first utilized
to find the number of clusters (i.e., the number of amplitude

Fig. 1. (a) Structure diagram of CMA and (b) amplitude diagram of 16-QAM
signals.
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levels) and cluster centroids (i.e., the standard amplitude radii).
Assisted by the above information, the K-means clustering algo-
rithm can easily escape from the dilemma of local optimization
with a fast convergence to realize the optimum amplitude
decision[15].
Figure 2 illustrates the extracted partial amplitudes of the PS

256-QAM signal to explain the implementation of the optimized
blind equalization. First, five innermost amplitude rings are
extracted from the amplitude diagram of the PS 256-QAM sig-
nal after clock recovery, as shown in Fig. 2(a). Next, the ampli-
tude information is shown in a polar coordinate system for easy
clustering, as shown in Fig. 2(b). Then, the peak-density cluster-
ing is utilized to calculate the number of amplitude levels and the
standard amplitude radii by finding the number of clusters and
cluster centroids[16].
Here, the key is that the cluster centroid of each cluster is

always surrounded by points with lower local density, so the
local density of the cluster centroid is the largest in this clus-
ter[17]. Thus, the local density ρ of each point is yielded based
on the Gaussian kernel function,

ρi =
X

j≠i
e−�disti,j=Dc�2: �5�

X = �X1, X2, : : : , XN � represents the amplitude points of N
data symbols, i, j ∈ N . disti,j refers to the Euclidean distance
between point Xi and point Xj, and Dc is the cutoff distance. If
the distance disti,j is less thanDc, the point Xj belongs to the clus-
ter of point Xi; otherwise, it is classified into other clusters. Next,
all points are arranged according to the local density in descend-
ing order, and the data point Xi �i ∈ N� with the local density of
ρi has been surrounded by i−1 points with higher local density.
In order to distinguish and extract the points with the peak

density as the cluster centroids, the minimum distance δ between
each point and the point with higher local density is calculated by

δi =minj=1:i−1�disti,j�: (6)

For the point Xl with the highest local density, the minimum
distance is set to the maximum distance δl between point Xl and
other points, defined as

δl =maxj=2:N�disti,j�: (7)

According to the decision diagram of local density ρ and rel-
ative distance δ, the number of amplitude levels can be obtained,
as shown by red circles in Fig. 3. Thus, the required standard
amplitude radii in the blind equalizer have been achieved.
After that, we need to yield the multi-level referenced ampli-

tude radii and make an optimized decision of amplitude level in
an indistinct amplitude diagram. With the assistance of the
achieved number of the clusters and cluster centroids, K-means
clustering is implemented to find the approximate boundaries of
each cluster.

3. Experiment Setup and Result

Figure 4 is the experimental setup of the PS 256-QAM coherent
optical transmission system. At the transmitter, the probabilistic
shaping is implemented based on the probabilistic amplitude
shaping (PAS) in Ref. [18]. The pseudo-random binary
sequence (PRBS) is firstly encoded by a constant component dis-
tribution matcher (CCDM) to convert a uniformly distributed
sequence into a desired non-uniformly distributed sequence,
and its output is used as amplitude bits[19]. Then, the non-uni-
form amplitude bits are mapped into pulse amplitude modula-
tion (PAM) 16 signals.
After that, the symbol sequence is up-sampled to four samples

per symbol, and then we apply a root-raised-cosine (RRC) finite
impulse response filter with 0.35 roll-off factor to mitigate the
impact of inter-symbol interference (ISI). Next, the auxiliary
symbols are appended for clock timing and FOE. Two series
of PAM-16 signals are imported into the 8 GSa/s arbitrary wave-
form generator for digital-to-analog conversion and modulated
by a Mach–Zehnder modulator to generate PS 256-QAM sig-
nals. The modulated 256-QAM signals are launched into the
80 km SSMF and received by the coherent optical receiver.
The first variable optical attenuator (VOA) is used to adjust
the input power to the fiber, and the second one is utilized to
vary the OSNR for BER measurement. At the receiver, the PS

Fig. 2. Extracted partial amplitudes of PS 256-QAM signal in (a) Cartesian
coordinate and (b) polar coordinate systems.

Fig. 3. Decision diagram of local density and relative distance.
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256-QAM signals are acquired by a 50 GSa/s real-time oscillo-
scope for analog-to-digital conversion. Then, the off-line DSP
algorithm implements the operations of resampling, RRC
filtering, and IQ orthogonalization. After that, the chromatic
dispersion of fiber is compensated in the frequency domain.
Next, clock recovery is implemented based on the G-TED algo-
rithmwith auxiliary symbols. After that, the proposed optimized
blind equalization of CMMA and RDE with 33 filter taps is
applied for channel equalization. Afterwards, accurate fre-
quency offset correction is carried out, and then 20 pilot symbols
are utilized for initial phase correction before completing carrier
phase estimation (CPE). Furthermore, in order to mitigate the
nonlinear distortion caused by optoelectronic devices, the sec-
ond-order Volterra nonlinear equalization (VNLE) is exploited

for both in-phase and quadrature components of the symbols
separately, which causes slight phase shifts. Due to the phase-
sensitive characteristic, a 121-tap direct-decision least mean
square (DD-LMS) equalizer is used to compensate residual lin-
ear impairments and slight phase shifts prior to the symbol
decision.
In this work, we verify the feasibility of the proposed method

and evaluate its performance based on the 7.4 bit/symbol 256-
QAM signal in Fig. 4, where the equalization performance is sig-
nificantly affected by the non-uniform amplitude distribution.
However, the clock recovery is effective, which is more condu-
cive to the identification of the inner amplitude levels.
For the extracted amplitudes from the amplitude diagram of

the PS 256-QAM signal with 7.4 bit/symbol in Fig. 5, we

Fig. 5. Extracted partial amplitudes of a PS 256-QAM signal with marked
standard radii and decision region of amplitude.

Fig. 4. Experimental setup of a PS 256-QAM coherent optical transmission system.

Fig. 6. Measured BER versus OSNR of 7.4 bit/symbol 256-QAM signal.
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calculate the standard amplitude radii, as shown by purple
crosses, and the corresponding decision region of amplitudes
is plotted by red lines. Here, the extracted amplitude diagram
of the polar coordinate in Fig. 2 is overlapped into a small inter-
val in order to clearly illustrate the amplitude variation. Based on
the proposed peak-density K-means clustering method, the
amplitude radii and the decision region of amplitudes are opti-
mized for CMMA and RDE equalization, as shown by black
crosses and black lines. It is obvious that the standard radii
and decision region of amplitude have drifted slightly.
Figure 6 shows the measured BER versus OSNR of a

7.4 bit/symbol 256-QAM signal over 80 km SSMF with the blind
equalizers of standard-CMMA (STD-CMMA), standard-RDE
(STD-RDE), and the modified CMMA and RDE with the pro-
posed method. The inset is the constellation diagram of the sig-
nal with the OSNR of 26.36 dB. Compared with the STD-
CMMA and STD-RDE equalizers, the modified RDE and
CMMA in this work both have an improvement of approxi-
mately 1 dB at the 1 × 10−3 BER. In practice, it is challenging
for CMMA to define excessive referenced radii due to high com-
putational complexity in Eq. (3). On the contrary, the judgment
condition is simple in the RDE. The internal multiple referenced
radii are only adjusted, and the other referenced radii remain
unchanged, which guarantees the small convergence error. As
a result, the modified RDE outperforms slightly the modified
CMMA, similar to the standard algorithms, as shown by penta-
gram-marked curves and circle-marked curves in Fig. 6.

4. Conclusion

In this work, we proposed and experimentally demonstrated a
peak-density K-means algorithm to optimize blind equalizers
of RDE and CMMA.We have successfully verified the feasibility
of the proposed method in a PS 256-QAM coherent optical
transmission system and achieved approximately 1 dB OSNR
improvement for the 7.4 bit/symbol 256-QAM signal’s trans-
mission over 80 km SSMF at the 1 × 10−3 BER. The proposed
method mitigates the dependence of blind equalization on
amplitude variation, which is promising for PS high-order
QAM coherent optical communication.
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