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We investigate the single-photon transport problem in the system of a whispering-gallery mode microresonator chirally
coupled with a two-level quantum emitter (QE). Conventionally, this chiral QE-microresonator coupling system can be stud-
ied by the master equation and the single-photon transport methods. Here, we provide a new approach, based on the
transfer matrix, to assess the single-photon transmission of such a system. Furthermore, we prove that these three
methods are equivalent. The corresponding relations of parameters among these approaches are precisely deduced.
The transfer matrix can be extended to a multiple-resonator system interacting with two-level QEs in a chiral way.
Therefore, our work may provide a convenient and intuitive form for exploring more complex chiral cavity quantum electro-
dynamics systems.
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1. Introduction

The interaction of light andmatter at the single-quantum level is
the basis of essential physics of many phenomena and applica-
tions[1], which has been extensively explored in various quan-
tum systems, such as quantum emitters (QEs) coupling with
single-mode waveguides[2–9], cavities[10–18], plasmons[19–23],
and whispering-gallery mode microresonators[24–30]. In recent
years, an emerging field of research, called “chiral quantum
optics”[31], exhibits chiral interactions of light and QEs[32–38]

and has received extensive attention in the field of optical non-
reciprocity[32,35,39–41].
To realize the chiral light–matter interaction, an external

magnetic field is usually required to induce the magneto-optical
effect[41] or initialize the states of QEs[42]. It greatly limits the
miniaturization and integration of single-photon devices.
Recently, all-optical approaches, based on the optical Stark shift
of quantum dots (QDs)[35] and the valley-selective response in
transition metal dichalcogenides[43], have been proposed to
release the requirement of magnetic biases. Towards on-chip
chiral single-photon interfaces, non-magnetic schemes have
been designed based on a whispering-gallery mode microreso-
nator chirally coupled with a two-level QE[32,35,39,40].
Theoretically, the single-photon transport (SPT) problem in

the system of a whispering-gallery mode microresonator
coupled to a waveguide can be solved by methods such as the

master equation (ME)[44–49], the SPT[4,26,50–52], and the transfer
matrix (TM)[53]. The whispering-gallery mode microresonator
system containing a two-level QE has also been discussed under
the framework of the ME and SPT theory[4,24,26,54], even extend-
ing to the chiral interactions[31,32,35,40]. However, how to deal
with the chiral interaction of a whispering-gallery mode micro-
resonator with a two-level QE using the TM method is still not
available. The inner link among these three methods also
remains to be revealed.
In this work, we study the SPT problem in a chiral QE-micro-

resonator system using the TM method. By introducing a non-
linear coefficient related to the two-level QE into the transfer
relation, we can use the TM method to solve the single-photon
transmission. In this sense, the two-level QE can be regarded as a
single-photon phase-amplitude modulator. Furthermore, we
demonstrate that the ME, SPT, and TM methods are equivalent
in dealing with such chiral cavity quantum electrodynamics
(QED) systems. The correspondence between the parameters
of the three methods is strictly deduced.
This paper is organized as follows. In Sec. 2, we review theME

and the SPT theory for the SPT problem in a chiral QE-micro-
resonator system, respectively. Next, we discuss the TM
approach and show that the three methods above are equivalent
if we treat the two-level QE as a single-photon phase-amplitude
modulator. In Sec. 3, we show the numerical results of these
three methods. In the end, we present a conclusion in Sec. 4.
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2. System and Model

The chiral QE-microresonator system, depicted in Fig. 1, con-
sists of a whispering-gallery mode microresonator, a waveguide,
and a two-level QE. The microresonator, which can be made
with various material platforms, such as silicon oxynitride[55,56],
polymers[57], or silicon on insulator[58–60], supports two travel-
ing wave modes, i.e., clockwise (CW) and counterclockwise
(CCW) modes. Near the outer sidewall of the microresonator,
the evanescent fields of the whispering-gallery modes are almost
perfectly circularly polarized with its polarization locked to the
propagation direction[27,35].We assume that the evanescent field
of the CCW mode is σ�-polarized and that of the CW mode is
σ−-polarized. As shown in Fig. 1, the QE is positioned near
the outer sidewall of the microresonator. After initializing
the QE in a specific spin ground state[61–63] or shifting the tran-
sition energy with a polarization-selective optical Stark
effect[64–66], we can treat the QE as a two-level system with only
σ�-polarization-driven transition. One can use a precisely posi-
tioned atom[40,67], QD[34,42,68,69], or nanopillar covered by
monolayers[70–72] to construct that two-level QE. As a result,
the QE-microresonator coupling strength is dependent on the
propagating direction of light in our chiral system. In the for-
ward case, the incident light from port 1 excites the CCWmode,
and it strongly couples with the QE with the coupling strength g .
However, in the backward (port 2 incident) case, the CW mode
is decoupled with the QE, and thus the coupling rate is negligible
(i.e., g ≈ 0). Practically, backscattering is usually present due to
the surface roughness of the microresonator. In this paper, we
treat the backscattering as one scatterer[73], as depicted in Fig. 1.
Below, we first provide the ME, SPT, and TM methods to

solve the response of the system. Then, we show that these three
methods are equivalent if we treat the two-level QE as a single-
photon phase-amplitude modulator. We only discuss the

forward case (g ≠ 0) in detail, and the backward case corre-
sponds to the system without the QE (g = 0).

2.1. Master Equation Method

In this section, we discuss the ME method to solve our model.
For a coupled atom-microresonator system, it has been ana-
lyzed[24]. Here, we discuss the chiral coupling using the same
approach. We consider that a two-level QE with transition fre-
quency ωqe is coupled to the CCW mode and decoupled to the
opposite mode. The two degenerate whispering-gallery modes,
with same resonant frequency Ω and dissipation κtol, are
assumed to be coupled with each other in a strength h due to
the scatterer. Here, we divide the dissipation κtol into two parts,
the intrinsic decay rate of κin and the external loss of κex, satisfy-
ing κtol = κin � κex. A weak coherent field of frequencyωwith an
amplitude αin drives the CCWmode a. In a good single-photon
approximation, αin ≪ 1. In a frame rotating at the frequency ω,
the Hamiltonian of our system can be obtained[74]:

H = −Δ1a†a − Δ2σ
�σ− − Δ1b†b� i

���������
2κex

p
αin�a† − a�

� g�a†σ− � σ�a� � h�a†b� b†a�, (1)

where g represents the coupling strength between the CCW
mode and the QE.Δ1 = ω −Ω andΔ2 = ω − ωqe are the detun-
ings. b is the annihilation operator of the CW mode. σ± are the
raising and lowering operators describing the two-level QE. It is
worth noting that if we consider the coupling of two microreso-
nators instead of the scatterer, the Hamiltonian has the same
form as Eq. (1). In this case, h describes the coupling strength
between the two microresonators.
Introducing the dissipation of the QE, γ, the evolution of the

system can be found by solving the ME,

ρ̇ = −i�H, ρ� � κtol�2aρa† − a†aρ − ρa†a�
� κtol�2 bρb† − b†bρ − ρb†b�
� γ�2σ−ρσ� − σ�σ−ρ − ρσ�σ−�, (2)

where ρ is the density operator. From Eq. (2), we can derive the
equations of motion,

ȧ = iΔ̃1a� αin
���������
2κex

p
− igσ− − ihb, (3a)

σ̇− = iΔ̃2σ
− � igσza, (3b)

ḃ = iΔ̃1b − iha, (3c)

and obtain the steady-state solution,

hai = iαin
���������
2κex

p
Δ̃1Δ̃2

Δ̃1�Δ̃1Δ̃2 � hσzig2� − Δ̃2h2
, (4)

where σz = σ�σ− − σ−σ�, Δ̃1 = Δ1 � iκtol, and Δ̃2 = Δ2 � iγ.
According to the input–output relation, haouti=αin−

���������
2κex

p hai,

Fig. 1. Schematic of a chiral QE-microresonator system. A two-level QE is
coupled to a whispering-gallery mode microresonator in a chiral way to form
the QE-microresonator system. A waveguide is side coupled to the microre-
sonator as input and output ports. A scatterer on the microresonator is con-
sidered to introduce backscattering. The arrows represent the propagating
direction of a single photon for an input to port 1 (green) or port 2 (red).
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the transmission amplitude is defined as tω = haouti=αin. Thus,
we can get the transmission amplitude in port 2:

tω =
Δ̃1��Δ1 � iκin − iκex�Δ̃2 � σzg2� − Δ̃2h2

Δ̃1�Δ̃1Δ̃2 � σzg2� − Δ̃2h2
: �5�

The transmission of port 2 can be obtained from T = jtωj2.
Moreover, the full quantum dynamics of the system can be
found by numerically solving Eq. (2) in a truncated space of pho-
ton number for the whispering-gallery modes.

2.2. Single-photon transport method

Hereafter, we consider only a single photon in our system. Based
on the SPT theory[4,26,50], our previous work[35] has given a
transmission amplitude for such a chiral system. The
Hamiltonian for the single-excitation system takes the form[35]

H =
Z

dxc†F�x�
�
ω0 − ivg

∂

∂x

�
cF�x�

�
Z

dxc†B�x�
�
ω0 � ivg

∂

∂x

�
cB�x�

� �Ω − iκin�a†a� �Ω − iκin�b†b
� �Ωe − iγ�a†eae �Ωga

†
gag

�
Z

dxδ�x�
h
Vac

†
F�x�a� V�

a a†cF�x�
i

�
Z

dxδ�x�
h
Vbc

†
B�x�b� V�

bb
†cB�x�

i

� gaσ� � g�a†σ− � hb†a� h�a†b, (6)

where c†F=B�x� is a Bosonic operator creating a forward- or back-
moving photon with reference frequency ω0 at x in the wave-
guide, σ� = a†eag (σ− = a†gae) is the raising (lowering) operator
for theQEwith transition frequencyωqe =Ωe − Ωg, g is the cou-
pling strength for the interaction between the QE and the CCW
mode a, and the QE is decoupled to the CW mode b in our sys-
tem. Va=b is the waveguide-microresonator coupling strength of
mode a or b. We set Va = Vb = V and thus have the external
decay rate of the microresonator κex = V2=2vg, where vg is the
group velocity of the photon in the waveguide.
A single-excitation state for the system is given by

jψi=
Z

dx�φ̃F�x,t�c†F�x� � φ̃B�x,t�c†B�x��j∅i

� �ẽa�t�a† � ẽb�t�b† � ẽqe�t�σ��j∅i, (7)

with the eigenfrequency ω, where φ̃F=B�x,t� is the single-photon
wave function of the forward- or backward-movingmode, ẽa=b is
the excitation amplitude of mode a or b, and ẽqe is the excita-
tion amplitude of the QE. Note that ϒ = e−iωtϒ with
ϒ ∈ fφR,φL,ea,eb,eqg. j∅i is the vacuum state. To solve the

single-photon transmission amplitude, we take φF�x� =
eiqx�θ�−x� � tωθ�x�� and φB�x� = rωe−iqxθ�−x� with the
Heaviside step function θ�x�, where tω (rω) is the transmission
(reflection) amplitude, and q is the wave vector of the input field
with the frequency around ω. Based on the Schrödinger equa-
tion in real space, Hjψi = i∂jψi=∂t, we can derive the steady-
state transmission amplitude in port 2:

tω =
Δ̃1��Δ1 � iκin − iκex�Δ̃2 − g2� − Δ̃2h2

Δ̃1�Δ̃1Δ̃2 − g2� − Δ̃2h2
, (8)

where the detunings Δ1, Δ̃1, and Δ̃2 are the same as the param-
eters in Sec. 2.1.
If we consider σz = −1 in the ME method, that is, the weak

probe field approximation[74], we can find that Eq. (5) and
Eq. (8) are equivalent. In Sec. 2.4, we will verify that the TM
method is consistent with the SPT method.

2.3. Transfer matrix method

Next, we study the chiral QE-microresonator system using
the TMmethod. Under the notation in Fig. 1, the coupling rela-
tion between the waveguide and the microresonator can be writ-
ten as

�
a1 = t�b1 − κ�a0
b0 = ta0 � κb1

,

�
c1 = t�d1 − κ�c0
d0 = tc0 � κd1

, (9)

where t and κ are the transmission and coupling coefficients, and
jtj2 � jκj2 = 1 for lossless coupling. We write Eq. (9) in a matrix
form:

0
BBB@

a0

b0

c0

d0

1
CCCA =

1
κ�

0
BBBBB@

−1 t� 0 0

−t 1 0 0

0 0 −1 t�

0 0 −t 1

1
CCCCCA

0
BBB@

a1

b1

c1

d1

1
CCCA

≡Mcpl

0
BBB@

a1

b1

c1

d1

1
CCCA: (10)

The size of the QE and the scatterer is much smaller than that
of the structure of the microresonator, so theoretically they can
be treated as particles. We assume the coupling point of the
waveguide with the microresonator, QE, and scatterer divide
the microresonator into three parts with lengths Lj (j = 1, 2,
3), satisfying L1 � L2 � L3 = 2πR; see Fig. 1. Here, R is the
radius of the microresonator. The field component notations
are shown in Fig. 1. When a single photon propagates around
the microresonator, it will accumulate propagation phases θj =
βLj and may attenuate with loss αj�Lj�[53]. We take θ = θ1 �
θ2 � θ3 and α = α1α2α3. The factor β is the propagation con-
stant in the microresonator as given by β = neffω=c, where
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neff is the effective refractive index, andω is the frequency. Thus,
we have the transfer relation

0
BBB@

a1

b1

c1

d1

1
CCCA =MproMx

0
BBB@

a3

b3

c3

d3

1
CCCA, (11a)

b3 = α2eiθ2a3, (11b)

d3 = α2eiθ2c3, (11c)

where

Mpro =

0
BB@
α−11 e−iθ1 0 0 0

0 α3eiθ3 0 0
0 0 α−13 e−iθ3 0
0 0 0 α1eiθ1

1
CCA, (12)

Mx is derived from the contributions of the QE and the scatterer,
and its exact form will be discussed below. We refer toMcpl and
Mpro as coupling and propagation matrices. Combining
Eqs. (10) and (11), we obtain the TM as

0
BBB@

a0

b0

c0

d0

1
CCCA =McplMproMx

0
BBB@

a3

b3

c3

d3

1
CCCA: (13)

We consider a single input of port 1 (c0 = 0). It excites the
CCW-direction whispering-gallery mode. In the following, we
will discuss the single-photon transmission in four differ-
ent cases.

2.3.1. No two-level QE and no scatterer

We first consider the case without two-level QEs and scatterers;
the form of Mx can be directly obtained:

Mx =

0
BBBBB@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1
CCCCCA
: (14)

In the absence of scatterers, the CCW and CW modes are
decoupled. Substituting Eq. (14) and Eq. (11) into Eq. (13),
we get the transmission amplitude in port 2[53]:

tω =
b0
a0

=
−t � αeiθ

−1� αt�eiθ
: (15)

2.3.2. No two-level QE and one scatterer

In this case, we consider the effect of the scatterer in the micro-
resonator. The relation between the amplitudes can be written as
b2 = tsb3 � rsc2, c3 = tsc2 � rsb3, a3 = a2, and d2 = d3. Thus, we
have

Mx =

0
BBBBB@

1 0 0 0

0 1=ts rs=ts 0

0 −rs=ts 1=ts 0

0 0 0 1

1
CCCCCA
, (16)

where ts and rs are the transmission and reflection coefficients,
respectively. They satisfy jtsj2 � jrsj2 = 1 when the dissipation
of the scatterer is neglected. The two whispering-gallery modes
are coupled to each other in this case. We assume the scatterer is
weak, thus we can write ts and rs in the following forms[73]:

ts = cos ε ≈ 1 −
ε2

2
, rs = i sin ε ≈ iε: (17)

Then, we have the transmission amplitude in port 2:

tω =
b0
a0

=
−t � αeiθ ts−t�αeiθ

1−tst�αeiθ

−1� αt�eiθ ts−t�αeiθ
1−tst�αeiθ

: (18)

2.3.3. One two-level QE and no scatterer

Here, we study the effect of a two-level QE directionally coupled
to a microresonator. Because the QE is in a specific spin ground
state or the polarization-selective energy-level transition, the
coupling of the QE and the evanescent field on the microreso-
nator is direction-dependent. The reflection of single-photon
propagation will vanish due to such chiral QE–light interac-
tion[32,35]. In this case, the single photon will not excite the
CW mode, leading to decoupling between the CCW and CW
modes. We assume the single photon through the two-level
QE with a transmission coefficient tqe, i.e., a3 = tqea2 and
d2 = d3, such that

Mx =

0
BBB@

t−1qe 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1
CCCA, (19)

and

tω =
b0
a0

=
−t � αeiθtqe
−1� αt�eiθtqe

: (20)

The specific form of tqe will be discussed below.
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2.3.4. One two-level QE and one scatterer

Combining with the above discussions, we can obtain the form
ofMx, considering both a two-level QE directionally coupled to
the microresonator and a scatterer:

Mx =

0
BBB@

t−1qe 0 0 0

0 1=ts rs=ts 0

0 −rs=ts 1=ts 0

0 0 0 1

1
CCCA: (21)

The transmission amplitude can be calculated as

tω =
b0
a0

=
−t � αeiθtqe

ts−t�αeiθ
1−tst�αeiθ

−1� αt�eiθtqe
ts−t�αeiθ
1−tst�αeiθ

: (22)

It can be found that the transmission amplitude tω is indepen-
dent of the relative distance L2 between the QE and the scatterer
on the microresonator from Eq. (22). This is because the chiral
coupling of the QEwith themicroresonator only causes amodu-
lation of the transmission tqe of the single photon propagating in
the microresonator. Such modulation does not depend on the
position of the QE on the microresonator; see Eq. (21).
Therefore, the case of a single-emitter coupling can be general-
ized to multi-emitter cases by successively multiplying tqe in the
transfer relation of the field amplitudes.

2.4. Single-photon phase-amplitude modulator

We define the round-trip time of the microresonator,
τrt = 2πRneff=c, that a photon needs to make a round trip in the
microresonator of length 2πR. It is the inverse of the free spectral
range F , i.e., τrt = 1=F [75]. Since F ≫ 1 for a microresonator,
τrt is a small amount. We have exp�iθ� = exp�i�ω − Ω�τrt� ≈
1� iΔ1τrt. On the one hand, for a single photon having travelled
a round trip in the microresonator, we have a1�τrt� = αt�a1�0�
from the transfer relation. The circulating power meets
ja1�τrt�j2 = α2t2ja1�0�j2. On the other hand, we can obtain
ja1�τrt�j2 = exp�−2κtolτrt�ja1�0�j2 from the dissipative proper-
ties of the microresonator. Hence, we have

α = e−κinτrt ≈ 1 − κinτrt, (23a)

t = e−κexτrt ≈ 1 − κexτrt: (23b)

Because the size of the two-level QE is much smaller than that
of the bend structure of the microresonator, the interaction
between the evanescent field and the QE can be approximated
as a waveguide coupling with a two-level QE directionally[32],
with a transmission coefficient

tqe =
ω − ωqe � i�γ − Γ�
ω − ωqe � i�γ � Γ� , (24)

where Γ is the decay rate from the QE into the waveguide.
Therefore, substituting Eqs. (17), (23), and (24) into Eq. (22)
and ignoring the second-order small quantity, we have

tω=
−t�αeiθtqe

ts−t�αeiθ
1−tst�αeiθ

−1�αt�eiθtqe
ts−t�αeiθ
1−tst�αeiθ

≈
κexτrt−1��1−κinτrt� iΔ1τrt�

h�
1− 2iΓ

Δ̃2�iΓ

��
1� ε2

iΔ̃1τrt�ε2=2

�i

−1��1� iΔ̃1τrt�
h�

1− 2iΓ
Δ̃2�iΓ

��
1� ε2

iΔ̃1τrt�ε2=2

�i

≈
Δ̃1��Δ1� iκin− iκex�Δ̃2−Γ�2=τrt−κtol��−Δ̃2

ε2

τ2rt

Δ̃1�Δ̃1Δ̃2−Γ�2=τrt−κtol��−Δ̃2
ε2

τ2rt

=
Δ̃1��Δ1� iκin− iκex�Δ̃2−Γ�2F −κtol��−Δ̃2�ε×F �2

Δ̃1�Δ̃1Δ̃2−Γ�2F −κtol��−Δ̃2�ε×F �2 : (25)

Comparing Eq. (25) with Eq. (8), we can find that if we take

�2F − κtol�Γ = g2, ε × F = h, (26)

the TM method and the SPT method are consistent. This also
proves that the assumption of Eq. (24) is well valid. For a system
in which a two-level QE is chirally coupled to the waveguide, the
light field interacts with the QE only once, and the decay rate
from the QE into the waveguide is Γ. However, when the QE
is coupled to the microresonator, the photons in the microreso-
nator interact with the QE many times. As a result, the micro-
resonator has a feedback modulation to the decay rate Γ. If we
define Γeff =

��������������������������
�2F − κtol�Γ

p
, then the physical meaning of Γeff is

the effective decay rate from theQE into themicroresonator. It is
equal to the coupling strength g. For the second term in Eq. (26),
ε is a dimensionless parameter in the TM method. It is equal to
the backscattering strength h by multiplying the free spectral
range F , which has a dimension of frequency. Note that ε only
needs to vary from 0 to π; see Eq. (17). Thus, ε reflects the nor-
malized magnitude of backscattering strength in the
microresonator.
Note that the chiral coupling of the two-level QE to the

microresonator does not require additional auxiliary fields.
This vacuum-induced interaction causes a phase shift and an
amplitude modulation of a single photon passing through the
QE. Therefore, the two-level QE can be treated as a single-
photon phase-amplitude modulator. We divide Eq. (24) into
two parts:

tqe = exp�iφpha� exp�−φdis�, (27)

where exp�iφpha� = arg�tqe� represents the change of the phase,
and exp�−φdis� = jtqej describes the attenuation of the ampli-
tude. The additional propagation phase introduced by the
two-level QE can be equivalent to a shift of the effective reso-
nance frequency of the microresonator. When a single photon
travels around the microresonator, in the absence of the QE,
we have θ = 2πRβ = 2πmω=Ω, where m = ΩneffR=c is the
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modal number. But, if we consider the chiral QE-microresona-
tor interaction, the additional propagation phase φpha leads to
θ� φpha = 2πmω=Ωeff . The effective resonance frequency of
the microresonator is

Ωeff ≈ Ω
�
1 −

φphaΩ
2πmω

�
, (28)

and Ωeff ≈ Ω�1 − φpha=2πm� for Ω=ω ≈ 1.
In general, by equating a two-level QE directionally coupled

with a microresonator to a single-photon phase-amplitude
modulator, we can use the TMmethod to solve the SPT problem
in such chiral QE-microresonator systems. This only needs to be
multiplied by a transmission coefficient tqe in the transfer rela-
tion. Furthermore, this approach can be extended to more com-
plex systems such as a coupled-resonator optical waveguide
interacting with an array of two-level QEs in a chiral way[76].

3. Results

Below, we numerically study our system to prove the consistency
of these three methods. For the TM and SPT methods, we solve
Eqs. (22) and (8) directly, whereas, for the ME method, we per-
form a full quantum dynamics simulation using Eq. (2).We set a
prepared QD as the two-level QE for coupling to a silicon-based
microresonator in a chiral way. In Figs. 1–4, the experimentally
available parameters are chosen as[60,68,77] R = 10.5 μm,
neff = 1.5, F=2π = 3 THz, αin=

�������
κtol

p
= 0.1, and γ=2π = 6MHz.

The conversion relationships between the parameters of the
three methods are given by Eqs. (23) and (26). We take
t = α = 0.99, thus satisfying the critical coupling condition,
κex=2π = κin=2π = 30GHz. The frequency of the QD is resonant
with the microresonator, i.e., ωqe = Ω.
We first consider the case without a two-level QD, corre-

sponding to Γ = 0 (g = 0), shown in Fig. 2. When the strength
h = 0, the deep transmission appears at the resonance point [see
Fig. 2(a)]. As the strength h increases, the transmission spectrum

gradually splits [see Figs. 2(b) and 2(c)]. The calculation results
of the three methods are exactly the same.
Then, we consider the chiral coupling of a two-level QD. By

modeling the two-level QD chirally coupled to the microresona-
tor as a single-photon phase-amplitude modulator, we can use
the TMmethod to solve SPT problems. Figure 3 shows the trans-
mission spectra without scatterers. The presence of the two-level
QD causes the transmission spectrum to split[35]. We can find
that the transmission spectra calculated by the three methods
are consistent regardless of whether it is under weak coupling,
Γ = 0.1γ and Γ = γ (g=κtol = 0.03 and g=κtol = 0.1), or strong
coupling, Γ = 100γ (g=κtol = 1). The results taking into account
the effect of backscattering are shown in Fig. 4. We consider the
case of strong coupling, Γ = 100γ. Whether it is in the case of
weak backscattering [see Fig. 4(a)] or strong backscattering
[see Fig. 4(b)], the calculation results are consistent.
Therefore, our numerical results further confirm the above theo-
retical analyses and prove the correctness of the parameter cor-
respondence among these three methods.
We now discuss the effect of the pump power in the ME

method. It is proportional to the driving amplitude αin. As we
have analyzed above, the three methods are equivalent only if
the probe field is a weak pump. It can be found that with the
increase of the driving amplitude, the results of the TM method
gradually have a difference with those of the ME method,

Fig. 2. Transmission spectra of a waveguide coupled with a microresonator.
The blue solid, red dashed, and green dotted curves are calculated by the TM,
ME, and SPT methods, respectively. The settings in the following figures are
the same: (a) in the absence of backscattering, (b) and (c) in presence of the
backscattering with strengths h = κin and h = 10κin, respectively. See Sec. 3
for other parameters.

Fig. 3. Transmission spectra for a chiral QE-microresonator system without
considering the backscattering: (a)–(c) Γ = 0.1γ, Γ = γ, and Γ = 100γ,
respectively.

Fig. 4. Transmission spectra for a chiral QE-microresonator system with the
QE and the scatterer: (a) Γ = 100γ, h = κin and (b) Γ = 100γ, h = 10κin.

Vol. 20, No. 6 | June 2022 Chinese Optics Letters

062701-6



especially at the resonant frequency Δ=κtol = 0; see Fig. 5(a).
This is because the average photon number of the system reaches
its maximum at the resonance, and it is no longer a single-pho-
ton case. Figure 5(b) shows the transmission spectra versus the
driving amplitude αin at Δ=κtol = 0. The result of the TM
method is constant because it is independent of αin. In contrast,
in the ME method, the transmission decreases as αin increases
for both strong and weak coupling of the QE. As shown in
Fig. 5(b), in the range of αin=

�������
κtol

p ≤ 0.23, the transmission cal-
culated by the ME method is greater than 0.9 (see the black dot-
ted line). At this time, the result calculated by the TM method,
T ≈ 1, is almost consistent with it. For a larger pump power, the
TM method is no longer accurate. It is worth noting that at off-
resonance, the TM method is still valid, as shown in Fig. 5(a).

4. Conclusion

We demonstrate that a two-level QE can be treated as a
single-photon phase-amplitude modulator in a chiral QE-
microresonator system. Based on this, we can solve the SPT
problem by the method of TM. Theoretical analyses confirm
that the TM method is consistent with the ME and the SPT
methods. Also, the results of numerical analysis prove the cor-
rectness of parameter relationships. Without loss of generality,
the TM method can be extended to solve the single-photon
transmission of any number of two-level QEs chirally coupled
to multiple microresonators.

Acknowledgement

This work was supported by the National Key R&D Program of
China (Nos. 2019YFA0308700, 2017YFA0303703, and
2017YFA0303701), the National Natural Science Foundation
of China (Nos. 11874212 and 11890704), the Fundamental

Research Funds for the Central Universities
(No. 021314380095), and the Program for Innovative Talents
and Entrepreneurs in Jiangsu (No. JSSCTD202138).

References
1. S. Haroche and J.-M. Raimond, Exploring the Quantum: Atoms, Cavities, and

Photons (Oxford University, 2006).
2. J.-T. Shen and S. Fan, “Strongly correlated multiparticle transport in one

dimension through a quantum impurity,” Phys. Rev. A 76, 062709 (2007).
3. T. S. Tsoi and C. K. Law, “Quantum interference effects of a single photon

interacting with an atomic chain inside a one-dimensional waveguide,” Phys.
Rev. A 78, 063832 (2008).

4. J.-T. Shen and S. Fan, “Theory of single-photon transport in a single-mode
waveguide. I. Coupling to a cavity containing a two-level atom,” Phys. Rev. A
79, 023837 (2009).

5. O. O. Chumak and E. V. Stolyarov, “Phase-space distribution functions for
photon propagation in waveguides coupled to a qubit,” Phys. Rev. A 88,
013855 (2013).

6. N. V. Corzo, J. Raskop, A. Chandra, A. S. Sheremet, B. Gouraud, and
J. Laurat, “Waveguide-coupled single collective excitation of atomic arrays,”
Nature 566, 359 (2019).

7. J. Tang, Y.Wu, Z.Wang, H. Sun, L. Tang, H. Zhang, T. Li, Y. Lu,M. Xiao, and
K. Xia, “Vacuum-induced surface-acoustic-wave phonon blockade,” Phys.
Rev. A 101, 053802 (2020).

8. S. Pucher, C. Liedl, S. Jin, A. Rauschenbeutel, and P. Schneeweiss, “Atomic
spin-controlled non-reciprocal Raman amplification of fibre-guided light,”
arXiv:2107.07272 (2021).

9. C.-H. Yan, M. Li, X.-B. Xu, Y.-L. Zhang, H. Yuan, and C.-L. Zou,
“Unidirectional transmission of single photons under nonideal chiral pho-
ton-atom interactions,” Phys. Rev. A 102, 053719 (2020).

10. L. Zhou, Z. R. Gong, Y.-X. Liu, C. P. Sun, and F. Nori, “Controllable scatter-
ing of a single photon inside a one-dimensional resonator waveguide,” Phys.
Rev. Lett. 101, 100501 (2008).

11. C.-H. Yan, W.-Z. Jia, and L.-F. Wei, “Controlling single-photon transport
with three-level quantum dots in photonic crystals,” Phys. Rev. A 89,
033819 (2014).

12. C.-H. Yan and L.-F. Wei, “Single photon transport along a one-dimensional
waveguide with a side manipulated cavity QED system,” Opt. Express 23,
10374 (2015).

13. P. Yang, X. Xia, H. He, S. Li, X. Han, P. Zhang, G. Li, P. Zhang, J. Xu, Y. Yang,
and T. Zhang, “Realization of nonlinear optical nonreciprocity on a few-pho-
ton level based on atoms strongly coupled to an asymmetric cavity,” Phys.
Rev. Lett. 123, 233604 (2019).

14. E. V. Stolyarov, “Single-photon switch controlled by a qubit embedded in an
engineered electromagnetic environment,” Phys. Rev. A 102, 063709 (2020).

15. X.-X. Hu, Z.-B. Wang, P. Zhang, G.-J. Chen, Y.-L. Zhang, G. Li, X.-B. Zou,
T. Zhang, H. X. Tang, C.-H. Dong, G.-C. Guo, and C.-L. Zou, “Noiseless pho-
tonic non-reciprocity via optically-induced magnetization,” Nat. Commun.
12, 2389 (2021).

16. J. Tang, L. Tang, H. Wu, Y. Wu, H. Sun, H. Zhang, T. Li, Y. Lu, M. Xiao, and
K. Xia, “Towards on-demand heralded single-photon sources via photon
blockade,” Phys. Rev. Appl. 15, 064020 (2021).

17. L. Tang, J. Tang, H. Wu, J. Zhang, M. Xiao, and K. Xia, “Broad-intensity-
range optical nonreciprocity based on feedback-induced Kerr nonlinearity,”
Photonics Res. 9, 1218 (2021).

18. L. Wang and J. Shi, “Quantum fluctuation and interference effect in a single
atom–cavity QED system driven by a broadband squeezed vacuum,” Chin.
Opt. Lett. 18, 122701 (2020).

19. M. S. Tame, K. R. McEnery, Ş. K. Özdemir, J. Lee, S. A. Maier, andM. S. Kim,
“Quantum plasmonics,” Nat. Phys. 9, 329 (2013).

20. J. D. Cox, M. R. Singh, M. A. Antón, and F. Carreño, “Plasmonic control of
nonlinear two-photon absorption in graphene nanocomposites,” J. Phys.
Condens. Matter 25, 385302 (2013).

21. V. F. Nezhad, C. You, and G. Veronis, “Nanoplasmonic magneto-optical iso-
lator [Invited],” Chin. Opt. Lett. 19, 083602 (2021).

Fig. 5. (a) Transmission spectra for different driving amplitudes αin (corre-
sponding to different pump powers), where the blue solid curve is calculated
by the TM method, and the green dash-dotted curve (the red dashed curve,
the purple dotted curve) is calculated by the ME method, with αin=

������
κtol

p
= 0.1

(αin=
������
κtol

p
= 0.5, αin=

������
κtol

p
= 1). (b) Transmission spectra as a function of αin

at different decay rates, where Γ= γ (the blue solid curve) and Γ= 100γ (the
red dash-dotted curve) correspond to weak and strong coupling, respectively.
Other parameters are κex = κin = 0.5κtol, γ/κtol = 1 × 10−4, g/κtol = 1, and
h = κin.

Chinese Optics Letters Vol. 20, No. 6 | June 2022

062701-7

https://doi.org/10.1103/PhysRevA.76.062709
https://doi.org/10.1103/PhysRevA.78.063832
https://doi.org/10.1103/PhysRevA.78.063832
https://doi.org/10.1103/PhysRevA.79.023837
https://doi.org/10.1103/PhysRevA.88.013855
https://doi.org/10.1038/s41586-019-0902-3
https://doi.org/10.1103/PhysRevA.101.053802
https://doi.org/10.1103/PhysRevA.101.053802
https://doi.org/10.1103/PhysRevA.102.053719
https://doi.org/10.1103/PhysRevLett.101.100501
https://doi.org/10.1103/PhysRevLett.101.100501
https://doi.org/10.1103/PhysRevA.89.033819
https://doi.org/10.1364/OE.23.010374
https://doi.org/10.1103/PhysRevLett.123.233604
https://doi.org/10.1103/PhysRevLett.123.233604
https://doi.org/10.1103/PhysRevA.102.063709
https://doi.org/10.1038/s41467-021-22597-z
https://doi.org/10.1103/PhysRevApplied.15.064020
https://doi.org/10.1364/PRJ.413286
https://doi.org/10.3788/COL202018.122701
https://doi.org/10.3788/COL202018.122701
https://doi.org/10.1038/nphys2615
https://doi.org/10.1088/0953-8984/25/38/385302
https://doi.org/10.1088/0953-8984/25/38/385302
https://doi.org/10.3788/COL202119.083602


22. G. Chen, J. Zhu, and X. Li, “Influence of a dielectric decoupling layer on the
local electric field and molecular spectroscopy in plasmonic nanocavities: a
numerical study,” Chin. Opt. Lett. 19, 123001 (2021).

23. M. R. Singh, G. Brassem, and S. Yastrebov, “Optical quantum yield in plas-
monic nanowaveguide,” Nanotechnology 32, 135207 (2021).

24. B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble,
“A photon turnstile dynamically regulated by one atom,” Science 319, 1062
(2008).

25. T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby,
K. J. Vahala, and H. J. Kimble, “Efficient routing of single photons by one
atom and a microtoroidal cavity,” Phys. Rev. Lett. 102, 083601 (2009).

26. J.-T. Shen and S. Fan, “Theory of single-photon transport in a single-mode
waveguide. II. Coupling to a whispering-gallery resonator containing a two-
level atom,” Phys. Rev. A 79, 023838 (2009).

27. C. Junge, D. O’Shea, J. Volz, and A. Rauschenbeutel, “Strong coupling
between single atoms and nontransversal photons,” Phys. Rev. Lett. 110,
213604 (2013).

28. Q.-T. Cao, H.Wang, C.-H. Dong, H. Jing, R.-S. Liu, X. Chen, L. Ge, Q. Gong,
and Y.-F. Xiao, “Experimental demonstration of spontaneous chirality in a
nonlinear microresonator,” Phys. Rev. Lett. 118, 033901 (2017).

29. R. Huang, A. Miranowicz, J.-Q. Liao, F. Nori, and H. Jing, “Nonreciprocal
photon blockade,” Phys. Rev. Lett. 121, 153601 (2018).

30. E. Will, L. Masters, A. Rauschenbeutel, M. Scheucher, and J. Volz, “Coupling
a single trapped atom to a whispering-gallery-mode microresonator,” Phys.
Rev. Lett. 126, 233602 (2021).

31. P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss,
J. Volz, H. Pichler, and P. Zoller, “Chiral quantum optics,” Nature 541,
473 (2017).

32. K. Xia, G. Lu, G. Lin, Y. Cheng, Y. Niu, S. Gong, and J. Twamley, “Reversible
nonmagnetic single-photon isolation using unbalanced quantum coupling,”
Phys. Rev. A 90, 043802 (2014).

33. I. M.Mirza, J. G. Hoskins, and J. C. Schotland, “Chirality, band structure, and
localization in waveguide quantum electrodynamics,” Phys. Rev. A 96,
053804 (2017).

34. S. Barik, A. Karasahin, C. Flower, T. Cai, H. Miyake, W. DeGottardi,
M. Hafezi, and E. Waks, “A topological quantum optics interface,”
Science 359, 666 (2018).

35. L. Tang, J. Tang, W. Zhang, G. Lu, H. Zhang, Y. Zhang, K. Xia, and M. Xiao,
“On-chip chiral single-photon interface: isolation and unidirectional emis-
sion,” Phys. Rev. A 99, 043833 (2019).

36. M. J. Mehrabad, A. P. Foster, R. Dost, E. Clarke, P. K. Patil, A. M. Fox,
M. S. Skolnick, and L. R. Wilson, “Chiral topological photonics with an
embedded quantum emitter,” Optica 7, 1690 (2020).

37. Y. Zhou, D.-Y. Lü, and W.-Y. Zeng, “Chiral single-photon switch-assisted
quantum logic gate with a nitrogen-vacancy center in a hybrid system,”
Photonics Res. 9, 405 (2021).

38. M. J. Mehrabad, A. P. Foster, N. Martin, R. Dost, E. Clarke, P. K. Patil,
M. S. Skolnick, and L. R. Wilson, “A chiral topological add-drop filter for
integrated quantum photonic circuits,” arXiv:2110.07277 (2021).

39. C. Sayrin, C. Junge, R.Mitsch, B. Albrecht, D. O’Shea, P. Schneeweiss, J. Volz,
and A. Rauschenbeutel, “Nanophotonic optical isolator controlled by the
internal state of cold atoms,” Phys. Rev. X 5, 041036 (2015).

40. M. Scheucher, A. Hilico, E. Will, J. Volz, and A. Rauschenbeutel, “Quantum
optical circulator controlled by a single chirally coupled atom,” Science 354,
1577 (2016).

41. Y. Kawaguchi, M. Li, K. Chen, V. Menon, A. Alù, and A. B. Khanikaev,
“Optical isolator based on chiral light–matter interactions in a ring resonator
integrating a dichroic magneto-optical material,” Appl. Phys. Lett. 118,
241104 (2021).

42. I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė,
T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl,
“Deterministic photon-emitter coupling in chiral photonic circuits,” Nat.
Nanotechnol. 10, 775 (2015).

43. S. Guddala, Y. Kawaguchi, F. Komissarenko, S. Kiriushechkina,
A. Vakulenko, K. Chen, A. Alù, V. M. Menon, and A. B. Khanikaev, “All-
optical nonreciprocity due to valley polarization pumping in transitionmetal
dichalcogenides,” Nat. Commun. 12, 3746 (2021).

44. D. W. Vernooy, A. Furusawa, N. P. Georgiades, V. S. Ilchenko, and
H. J. Kimble, “Cavity QED with high-q whispering gallery modes,” Phys.
Rev. A 57, R2293 (1998).

45. R. Miller, T. E. Northup, K. M. Birnbaum, A. Boca, A. D. Boozer, and
H. J. Kimble, “Trapped atoms in cavity QED: coupling quantized light
and matter,” J. Phys. B At. Mol. Opt. Phys. 38, S551 (2005).

46. T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg,
K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one
atom and a monolithic microresonator,” Nature 443, 671 (2006).

47. K. Srinivasan andO. Painter, “Mode coupling and cavity-quantum-dot inter-
actions in a fiber-coupled microdisk cavity,” Phys. Rev. A 75, 023814 (2007).

48. K. Srinivasan and O. Painter, “Linear and nonlinear optical spectroscopy of a
strongly coupled microdisk-quantum dot system,” Nature 450, 862 (2007).

49. A. Mazzei, S. Götzinger, L. de S. Menezes, G. Zumofen, O. Benson, and
V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gal-
lery modes by a single Rayleigh scatterer: a classical problem in a quantum
optical light,” Phys. Rev. Lett. 99, 173603 (2007).

50. J. T. Shen and S. Fan, “Coherent photon transport from spontaneous emis-
sion in one-dimensional waveguides,” Opt. Lett. 30, 2001 (2005).

51. J.-T. Shen and S. Fan, “Coherent single photon transport in a one-dimen-
sional waveguide coupled with superconducting quantum bits,” Phys. Rev.
Lett. 95, 213001 (2005).

52. H. Zheng, “Interacting photons in waveguide-QED and applications in
quantum information processing,” Ph.D. Thesis (Duke University, 2013).

53. D. G. Rabus, Integrated Ring Resonators (Springer, 2007).
54. M. Rosenblit, P. Horak, S. Helsby, and R. Folman, “Single-atom detection

using whispering-gallery modes of microdisk resonators,” Phys. Rev. A
70, 053808 (2004).

55. F. Morichetti, A. Melloni, A. Breda, A. Canciamilla, C. Ferrari, and
M. Martinelli, “A reconfigurable architecture for continuously variable opti-
cal slow-wave delay lines,” Opt. Express 15, 17273 (2007).

56. C. F. Andrea Melloni, Francesco Morichetti, and M. Martinelli,
“Continuously tunable 1 byte delay in coupled-resonator optical wave-
guides,” Opt. Lett. 33, 2389 (2008).

57. J. K. Poon, L. Zhu, G. A. DeRose, and A. Yariv, “Transmission and group
delay of microring coupled-resonator optical waveguides,” Opt. Lett. 31,
456 (2006).

58. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon
chip,” Nat. Photonics 1, 65 (2007).

59. M.Hafezi, S.Mittal, J. Fan, A.Migdall, and J.M. Taylor, “Imaging topological
edge states in silicon photonics,” Nat. Photonics 7, 1001 (2013).

60. J. Wang, Z. Yao, and A. W. Poon, “Silicon-nitride-based integrated optoflui-
dic biochemical sensors using a coupled-resonator optical waveguide,” Front.
Mater. 2, 34 (2015).

61. M. Atatüre, J. Dreiser, A. Badolato, A. Högele, K. Karrai, and A. Imamoglu,
“Quantum-dot spin-state preparation with near-unity fidelity,” Science 312,
551 (2006).

62. X. Xu, Y. Wu, B. Sun, Q. Huang, J. Cheng, D. G. Steel, A. S. Bracker,
D. Gammon, C. Emary, and L. J. Sham, “Fast spin state initialization in a
singly charged InAs-GaAs quantum dot by optical cooling,” Phys. Rev.
Lett. 99, 097401 (2007).

63. X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and
L. J. Sham, “Coherent population trapping of an electron spin in a single neg-
atively charged quantum dot,” Nat. Phys. 4, 692 (2008).

64. K. Xia and J. Twamley, “All-optical switching and router via the direct quan-
tum control of coupling between cavity modes,” Phys. Rev. X 3, 031013
(2013).

65. P. M. Vora, A. S. Bracker, S. G. Carter, T. M. Sweeney, M. Kim, C. S. Kim,
L. Yang, P. G. Brereton, S. E. Economou, and D. Gammon, “Spin-cavity
interactions between a quantum dot molecule and a photonic crystal cavity,”
Nat. Commun. 6, 7665 (2015).

66. C.-K. Yong, J. Horng, Y. Shen, H. Cai, A. Wang, C.-S. Yang, C.-K. Lin,
S. Zhao, K. Watanabe, T. Taniguchi, S. Tongay, and F. Wang,
“Biexcitonic optical Stark effects in monolayer molybdenum diselenide,”
Nat. Phys. 14, 1092 (2018).

67. J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov,
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