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Photonic structures with topological edge states and resonance loops are both important in optical communication sys-
tems, but they are usually two separate structures. In order to obtain a photonic system combining properties from both, we
design multiple-layer nested photonic topological structures. The nested topological loops not only have topological pro-
tection immune to structural disorder and defects, but also possess both the properties of unidirectional propagation and
loop resonance. Through mode analysis and simulations, we find that the transport can form diverse circulation loops.
Each loop has its own resonance frequencies and can be solely excited in the nested layered structure through choosing
its resonance frequencies. As a result, this work shows great application prospects in the area of reconfigurable photonic
circuits.
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1. Introduction

Controlling the photonic flow of light on demand is critical for
the next generation of photonic integrated circuits to meet the
ever-expanding information explosion for data processing,
communication, and computing. Topological photonics has
brought about revolutionary schemes for the design of photonic
components that enable robust light transport by topological
protection. Topological photonics is the analogical study of
topological insulators from which the quantumHall (QH) effect
and quantum spin Hall (QSH) effect are introduced into pho-
tonic systems[1–16]. Topological photonics provides a solid foun-
dation to efficiently guide, switch, and route light in integrated
circuits. But, only if the topological protection is combined with
reconfigurability can it meet the request for the next generation
of integrated devices. The ordinary topological transport exists
only at the static structure boundary so thatmost of the footprint
of the photonic structure is wasted. The reconfigurability
of topological photonic transport pathways has been demon-
strated in different structure systems and becomes a research
hotspot[6–10]. For example, a photonic topological insulator
(PTI) with mechanical reconfigurability was demonstrated in
the gigahertz (GHz) region[11]. Another dynamically reconfigur-
able topological edge state is achieved in phase change photonic
crystals (PCs)[10]. In Ref. [8], the non-Hermitian-controlled
topological state enables the dynamic control of robust trans-
mission links of light inside the bulk. Very recently, the topologi-
cal photonic modes have been switched on or off through
changing the liquid crystal orientation[9] and the effective

refractive index of the grating[10]. The above-mentioned recon-
figurability has to rely on the external conditions, such as the
mechanical force, to change the configuration of scatterers[6],
the voltage to modulate material refractive index[7], and the
pumping energy to induce the local non-Hermitian symmetry
breaking[8]. These external conditions can dynamically change
the topological transport pathways.
In this work, we propose a different reconfigurability scheme

of photonic topological transport pathways. We design multi-
layer nested photonic topological loops similar to a Russian doll.
Through the tuning of light frequency, the transport channels in
the structures can take on interesting and diverse forms, such as
single external loop, single inner loop, and single middle loop.
Compared with the other similar schemes, the unique value
of our designed structure is that the reconfigurability of the
topological loop channels does not need any external condition,
and it can be achieved through the signal source frequency,
which greatly reduces the difficulty and complexity of the
design.

2. Topological Edge States and Loop Models

The design begins with a two-dimensional (2D) PC made of
purely dielectric rods in a triangular lattice, as shown in Fig. 1(a).
In Fig. 1(a), a1 = �a=2�i� �a ���

3
p

=2�j and a2 = ai are the lattice
basic vectors, where a is the lattice constant. The rods have the
permittivity of 11.7 and the diameter of d = 0.32a. The back-
ground is the air. The first Brillouin zone with three highly
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symmetric points is shown in Fig. 1(d). The hexagon is the lattice
primitive cell (the smallest structure period). We call such a
structure the A-lattice. Later we shrink A-lattice to that in
Fig. 1(b), in which we choose the lattice basic vectors as a 0

1
and a 0

2, and the lattice constant becomes a=2. We call the lattice
in Fig. 1(b) the B-lattice. If we set a boundary between the two
lattices A and B and calculate the edge states, we have to take the
smallest common period of the two lattices. The smallest
common period is just the solid hexagonal in Figs. 1(a) and
1(b), respectively. Thus, for the later study of edge states, the
eigenfrequency calculations must use the solid hexagonal as
the unit cell for both the lattices. In the calculations performed
by COMSOL Multiphysics, the TM modes of the electromag-
netic wave (the fields with Ez ,Hx, andHy components) are con-
sidered. In order to obtain the common band gaps of A-lattice
and B-lattice, we enlarge the rod diameter of A-lattice to 0.578a.
Thus, A-lattice becomes C-lattice. The frequency bands for C-
lattice and B-lattice are shown in Figs. 2(a) and 2(b) with the
direction M − Γ − K in the first Brillouin zone. The triangular
lattice has aC6 point group symmetry. The eigenstates atΓ point
have two irreducible representations: E1 and E2. As shown in
Fig. 2(a), the Ez mode fields of the two degenerate points are sim-
ilar to the p-orbit and d-orbit of the electron wave function in
quantum mechanics[11], respectively. E1 corresponds to the
dipole state with double degeneration, i.e., two p-orbits, px
and py, with odd parity; E2 corresponds to the quadrupole state
with double degeneration, i.e., two d-orbits, dx2−y2 and d2xy, with
even parity. For A-lattice, the frequency of d-orbit is higher than
that of p-orbit, and the corresponding band gap is topologically
trivial. For B-lattice, because we have used the enlarged unit cell,
a band fold occurs, leading to the frequency bands in Fig. 2(b).

Because of the band fold, two pairs of bands are also degener-
ated. Different from the orbit positions in Fig. 2(a), the fre-
quency of d-orbit is smaller than that of p-orbit in Fig. 2(b),
i.e., the two orbits have been reversed, and the corresponding
bandgap is topologically nontrivial.
In order to show the evolution of topological phase from

A-lattice to B-lattice, based on B-lattice, we further choose a
dashed hexagon with the distance r from the center to the side
of the dashed hexagon. The value of r is increased from a=4 to
a=2. The new unit cell with r = a=2 only corresponds to
B-lattice.
We use the dashed hexagon as the new unit cell to perform the

frequency band calculation and record the positions of p-orbit
and d-orbit with r increasing from a=4 to a=2. The result is
shown in Fig. 2(c), in which the evolution of the two orbits
clearly shows the process of orbit reversal. It is clear that the
p-orbit position has a sharp drop, and it occurs because the
dashed unit cell is tangent to rods.
The key to realize the QSH effect in optical systems is to build

the optical pseudospin states. The effective Hamiltonian of the
system is expressed as[14]

H�k� = H0 �H 0, (1)

where H0 =

2
4
εp

εp
εd

εd

3
5 is the effective Hamiltonian at

k = 0. εp and εd are the eigenfrequencies of p and d orbits,
respectively. H 0 is a perturbation term, which can be
expressed as

H 0
ij =Mij �

X
α

MiαMαj

εi − εα
, i, j = 1, 2, 3, 4 , �2�

Fig. 1. Schematic of triangular lattice in different forms. (a) A-lattice. The
primitive cell consisting of one dielectric rod with the permittivity of 11.7, a1
and a2 are unit vectors with the length of a as the lattice constant, and
d = 0.32a is the rod diameter. (b) B-lattice. The rods are the same as those
in A-lattice. a1

0 and a2
0 are the unit vectors with length a/2. The solid hexagonals

are the unit cell including one rod and six semi-rods in the unit cell.
(c) C-lattice. The lattice is the same as A-lattice, but the primitive cell consists
of one dielectric rod with the diameter d = 0.578a. (d) The first Brillouin zone
with the unit vectors a1 and a2.

orbit
orbit

Fig. 2. Eigenfrequency bands of (a) C-lattice and (b) B-lattice. (c) The p-orbit
and d-orbit reversal process with the value of r. It is clear that the d-orbit
position has a sharp drop, and it occurs because the dashed unit cell is
tangent to rods. The gray region is the common bandgap.
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where Mij = hΓ ijk · pjΓ ji is the overlapping integral between
different basic vectors Γ i and Γ j. Through the transformation
of basic vectors, under the new basic vector space, the effective
Hamiltonian is rewritten as

H�k� =
�
H� 0
0 H−

�
, (3)

with H± =
� −M � Bk2 A�kx ± iky�
A*�kx ± iky� M − Bk2

�
, where M = εd−εp

2 , A is

the non-diagonal term of the first-order perturbation Mij, and
B comes from the diagonal term of the second-order perturba-
tion MiαMαj, which is a negative value. Then, the spin Chern
number can be simplified as

C± = ±
1
2
�sgn�M� � sgn�B��: (4)

The results of Eq. (4) are based on the values ofMB.MB > 0
leads to C± = ±1 corresponding to the topologically nontrivial
state, whereas MB < 0 leads to C± = 0 corresponding to the
topologically trivial state. For a normal case, εp < εd , M > 0,
and MB < 0. For the reversal case, εp > εd , M < 0, and
MB > 0. Therefore, the band reversal will lead to the topology
transition.
Furthermore, B-lattice and C-lattice have a large common

bandgap from 0.44(2πc=a) to 0.548(2πc=a). Such a large
common bandgap can warrant an intense localization effect
of edge states. The intense localization effect is in favor of the
formation of multiple-layer dense circulation loops. There is
an extra band (black solid line) between p and d-orbit. The for-
mation of the extra band is accidental because when the rod
diameter of A-lattice increases, the band below p-orbit slowly
moves up and passes over the p-orbit, resulting in the inserted
band. But, the inserted band only decreases the width of the non-
trivial band gap and does not affect the topological properties of
nontrivial band gap, just as the inserted band in Ref. [17].
According to the bulk-boundary correspondence, the topo-

logical edge states should exist at the interface between trivial
and nontrivial systems, analogous to the QSH effect in electron-
ics. To find and study the edge states, a supercell including the
interface of lattices B and C has to be constructed, which is
denoted by the rectangle in Fig. 3(b). In order to enhance the
localization effect of edge states, we construct a compound
boundary configuration by enlarging the interval between the
trivial and nontrivial PCs. This configuration will realize the
coupling of topological edge states and the line defect states.
At the interface, the distance between two rods from lattices
B and C has been optimized to 3

���
3

p
a=4. The supercell has

the smallest common period in the truncated (x) direction for
the two lattices and is infinite in the y direction, but we have
to take a finite length in the y direction in real calculations.
The frequency bands for the supercell are given in Fig. 3(a).
There is only one symmetric edge state curve inside the large
bandgap. The large bandgap of the supercell is due to the large

common bandgap of B-lattice and C-lattice. The time-averaged
Poynting vectors for two symmetric points P andQ on the curve
are shown in Fig. 3(b). It is found that there is one energy flow
vortex within the edge rod of C-lattice for both points P and Q,
and a parallel energy flow within the gap of the two lattices. The
two kinds of energy flows mean that the modes P and Q are the
hybrid results of the ordinary line defect state and topological
edge state. The hybrid edge state is due to the large space gap
between the two lattices. The ordinary topological edge state
curves are usually a pair of two symmetric curves that almost
extend to the whole bandgap range. Only a mini-gap may occur
in the edge modes due to the small mismatching of lattices. In
this occasion, due to the large mismatching of lattices, the gap of
the two curves is made so large that the other branch curve is
pushed into the bulky band. The rotation directions for points
P andQ are anticlockwise and clockwise, respectively. In fact, all
the points on the left branch curve (right branch curve) have the
same rotation direction as point P (point Q). The opposite
energy flow vortices mean that the transport direction of the
edge states may be spin-locked. If the source spin is clockwise
(anticlockwise), the transport direction is locked to the group
velocity direction of the right (left) curve branch, i.e., the
�x �−x� direction. The similar topologically protected defect
modes have been proposed in Refs. [18,19]. In Ref. [19], the

Fig. 3. (a) Edge state dispersion curve from the two lattices. The left curve
branch and the right curve branch have the negative and positive group veloc-
ities, respectively. (b) The energy flow vectors around the edge corresponding
to the edge states P and Q in (a).
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authors propose a similar compound boundary configuration of
the line air defect and the topological edge states. The topological
line defect state can be excited to form unidirectional transmis-
sion locked by the pseudospin sources and is robust to the dis-
orders. Chen et al.[19] have also considered the coupling between
the edge states and the line defect state. But, in their paper, the
compound boundary configuration is “the nontrivial PC-air-
nontrivial PC”, while ours is “the nontrivial PC-air-trivial PC.”
To demonstrate the spin-locked unidirectional transport, we

perform the frequency-domain simulations in a frequency range
on the edge state curve. In our article, the design is excited by a
point source with pseudospin at a specific frequency in the sim-
ulation model. The boundary conditions are set to be the scat-
tering boundary condition. In order to excite the topological
edge state from the hybrid state, the point source with pseudo-
spin has to be placed close to the large rod at the edge of the
C-lattice. Figures 4(a) and 4(b) are the results with the spin
source of ω = 0.51�2πc=a� on the boundary. The frequency line
has two interest points with the edge state curve. The anticlock-
wise source excites the mode on the left of the curve with neg-
ative group velocity, while the clockwise source excites the mode
on the right of the curve with positive group velocity. In order to
verify the property of the topological edge state, in Figs. 4(c)
and 4(d), we show the transmission results of the spin source
with ω = 0.508�2πc=a� in the topological edge state waveguide
and the spin source with ω = 0.511�2πc=a� in the ordinary line
defect waveguide with a bend (from the B-lattices), respectively.
All of the field distributions are the amplitude of electric fields.
The topological edge state in Fig. 4(c) has the performance of
robustness against sharp bends, but the ordinary edge state in
Fig. 4(d) is bidirectional and cannot pass the sharp bends. In
the frequency range over the dashed line corresponding to ω =
0.50�2πc=a� in Fig. 3(a), all the simulations of the topological
edge state waveguide and the spin source edge states show the

property of unidirectional transport. Below ω = 0.50�2πc=a�,
the spin-locked transport becomes invalid, and both the unidi-
rectional transport and bidirectional transport will occur at dif-
ferent frequencies. The simulation results are in good agreement
with the above theoretical analysis.
The spin-locked unidirectional transport provides us with a

space of designing diverse photonic loops. In Fig. 5, we give some
models of nested photonic topological loops. The white regions
are B-lattice (topologically nontrivial) and the gray regions are
C-lattice (topologically trivial). There are some nested hexagons.
Each hexagon is divided into two isosceles trapezoids. In
the upper half-space, the isosceles trapezoids are denoted as
A1, A2, : : : , and, in the lower half-space, the isosceles trapezoids
are denoted as B1, B2, : : : ; in turn from inner to outer. The
source is placed at the interface of the two lattices. The unidirec-
tional transport can form photonic loops around these trape-
zoids with definite rotation direction. Figure 5 shows all
potential transport paths denoted by the dashed arrows. The
two solid arrows denote the input and the output light flows.
For the clockwise spin source, if the inside and outside loops
are C-lattice and B-lattice, respectively, the loop rotation direc-
tion is clockwise; conversely, if the inside and outside loops are
B-lattice and C-lattice, respectively, the loop rotation direction is
anticlockwise. On the other hand, for the anticlockwise spin
source, the case is reversed. However, whether the potential
transport paths can be realized is dependent on the source fre-
quency or wavelength and the loop optical length, because in a
closed loop the phase change can result in the constructive or
destructive interference. For a loop length L, the total phase
change Δϕ is equal to 2π × ngL=λ, in which ng = c=vg (vg is
the group velocity of the edge state). If Δϕ = 2kπ, the loop will
lead to a constructive interference and form a resonator, while if
Δϕ = �2 k� 1�π (k is an integer number), the loop will lead to a
destructive interference, and there is no transport in the loop.
Therefore, for the fixed loops, through adjusting the source fre-
quency, the reconfigurable diverse photonic topological loops
can be achieved. The conventional photonic loops or cavities
cannot be made as multiple layers with high density, and the
transport paths in them are always fixed.

Fig. 4. Edge state transport simulations. (a) The straight edge state with anti-
clockwise source. (b) The straight edge state with clockwise source. (c) The
topological edge state with a sharp bend. (d) The ordinary edge state with a
sharp bend.

Fig. 5. Model designs of nested topological loops. (a) One layer with clockwise
spin source. (b) Two layers with anticlockwise spin source. The dashed arrows
denote all the potential photonic paths. The white and gray regions are B-lat-
tice (topologically nontrivial) and C-lattice (topologically trivial), respectively.
The red and blue arrows denote the light flows along the loops A and B,
respectively.
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3. Simulations of Diverse Topological Photonic Loops

The unidirectional transport of the topological edge states pro-
vides the condition to form the photonic loops. According to
Fig. 5, we construct the frequency-domain simulation models
of nested topological loops from one layer to two layers. In order
to account for the results, we define the loop around A1 as �A�

1 �,
in which “A1” is the region forming the loop, “[ ]” denotes the
loop around A1, and “+” (“-”) represents the clockwise (anti-
clockwise) rotation direction of loops. The other loops are
denoted in the same way. Figure 6 shows the four different
results of the one-layer loop for the same clockwise spin source
with four frequencies. The side length of the loop is 9a. In
Fig. 6(a), the intense resonance field is along both the peripheries
of A1 and B1 with reversed directions, but the field on the
common side of A1 and B1 is too small to be seen in the 2D field
plot. The small field on the common side is because at the
common side the two light flows from A1 and B1 are not in
phase, and the superposed fields quickly decrease compared
with the other branches in A1 and B1. Figure 6(b) is similar to
Fig. 6(a), but, at the common side, the two light flows from A1

and B1 are in phase, and the superposed fields lead to a construc-
tive interference. In both Figs. 6(a) and 6(b), the loops form the
resonator because the input and output fields are much smaller
than the resonance fields in the loops. In brevity, we define the
loops of Figs. 6(a) and 6(b) as �A�

1 � B−
1 � and �A�

1 � � �B−
1 �,

respectively. Figures 6(c) and 6(d) are similar to Figs. 6(a)
and 6(b), respectively. The difference is that in Figs. 6(c) and
6(d) the input and output fields are close to the fields in the
loops. Hence, there is no resonance enhancement in Figs. 6(c)
and 6(d), and the loops have no resonance effect. To account
for it, we plot the one-dimensional fields along the common side
from Figs. 6(b) and 6(d) in Fig. 7. In Fig. 6(b), the field on the
common side is much larger than the input and the output
Next, we consider the case of two-layer topological loops

shown in Fig. 5(b). The size of the inner layer is the same as that
in Fig. 6. The outer loop has the side length 15a. Through

adjusting the frequency of the anticlockwise spin source, we
obtain four typical results shown in Fig. 8. In Fig. 8(a) with
ω = 0.53(2πc=a) and in Fig. 8(b) with ω = 0.5034(2πc=a), only
the inner loops have been excited with the opposite rotation
direction to that in Fig. 6, which are denoted as �A−

1 � B�
1 �

and �A−
1 � � �B�

1 �, respectively. The frequencies are the same as
those in Figs. 6(a) and 6(b), respectively. The resonance condi-
tion for the inner loop is the same as that in Fig. 6. Thus, even if
the light first meets the outer loop, the resonance condition
allows the light to break through the outer loop and excite
the inner loop. In Fig. 8(c) with ω = 0.5227(2πc=a), only
the outer loop has been excited, which is denoted as
�A�

2 � B−
2 �. In Fig. 8(d) withω = 0.4991(2πc=a), all potential res-

onance loops have been excited, which are denoted
as �A−

1 � � �A�
2 � � �B�

1 � � �B−
2 �.

Fig. 6. Light flows from the clockwise spin source in a one-layer topological
loop with normalized angular frequencies: (a) 0.53(2πc/a), (b) 0.5034(2πc/a),
(c) 0.5348(2πc/a), and (d) 0.5504(2πc/a). The side length of loop is 9a.

Fig. 7. One-dimensional fields along the line through the source and the
common side in Fig. 6(b) with the resonance loop and in Fig. 6(d) with the
non-resonance loop.

Fig. 8. Light flows from the anticlockwise spin source in two-layer topological
loops with normalized angular frequencies: (a) 0.53(2πc/a), (b) 0.5034(2πc/a),
(c) 0.5227(2πc/a), and (d) 0.4991(2πc/a). The outer loop has the side length
of 15a.
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To summary, in Table 1, we write all potential forms of loops
from one layer to two layers. In the table, the forms of loops with
larger layer numbers include the forms of loops with smaller
layer numbers. Although we have only displaced the results of
the nested loops with two layers, the controllable transport loops
can be extended to the nested structure with any number of
layers.

4. Conclusions

In summary, we have designed the reconfigurable topological
channels in the form of multiple-layer nested loops. Although
the reconfigurable topological waveguides have been widely
studied, the unique value of our design is that the reconfigurable
method does not rely on the external conditions; instead, the
selective excitation of different loops is dependent on the source
frequency. Thus, we have provided a new reconfigurablemethod
for topological waveguides. In its multiple applications, the
potential application in laser resonators may be expected. For
general laser resonators, the defect and disorder will affect the
loss threshold of lasers and reduce the output power largely.
If our current topological loops are used as the laser resonators,
their ability to be immune to the defect and disorder will make
the laser work with high output efficiency and more stability.
Therefore, the new reconfigurable and diverse photonic loop
channels combined with topological protection will find impor-
tant applications in the design of a variety of photonic devices.
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