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We present a discovery of an unusual unidirectionally rotating windmill scattering of electromagnetic waves by a mag-
netized gyromagnetic cylinder via an analytical theory for rigorous solution to fields and charges and an understanding of
the underlying mathematical and physical mechanisms. Mathematically, the generation of nonzero off-diagonal compo-
nents can break the symmetry of forward and backward scattering coefficients, producing unidirectional windmill scatter-
ing. Physically, this windmill scattering originates from the nonreciprocal unidirectional rotation of polarized magnetic
charges on the surface of a magnetized gyromagnetic cylinder, which drives the scattering field to radiate outward in
the radial direction and unidirectionally emit in the tangential direction. Interestingly, the unidirectional electromagnetic
windmill scattering is insensitive to the excitation direction. Moreover, we also discuss the size dependence of unidirec-
tional windmill scattering by calculating the scattering spectra of the gyromagnetic cylinder. These results are helpful for
exploring and understanding novel interactions between electromagnetic waves and gyromagnetic materials or structures
and offer deep insights for comprehending topological photonic states in gyromagnetic systems from the aspect of fun-
damental classical electrodynamics and electromagnetics.
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1. Introduction

Scattering of light and electromagnetic waves by particles and
cylinders is one of the most fundamental problems in classical
electrodynamics, electromagnetics, and optics. Rayleigh made
the first, to the best of our knowledge, quantitative study[1,2],
and, subsequently, Mie established the rigorous scattering
theory for a homogeneous sphere of arbitrary size, which was
then extended to solve the infinite isotropic cylinder[3,4].
Recently, electromagnetic scattering by an anisotropic cylinder
with off-diagonal permittivity and permeability tensors has
attracted great attention[5–7]. On the other hand, various
numerical methods have existed to solve the scattering problems
of an anisotropic cylinder, such as the wave spectral method[8,9],
the frequency domain finite difference method[10], the dyadic
Green’s function method[11], the Fourier expansion method[12],
and the finite element method[13].
Gyromagnetic material, as one of the most representative

anisotropic media, possesses a unique permeability tensor
with antisymmetrical and imaginary off-diagonal compo-
nents[14,15]. It has been widely used in optical technologies such

as self-collimation[16], optical isolation[17], nonreciprocal Goos–
Hänchen shift[18], and negative refraction[19,20]. Recently, it has
become an excellent platform to investigate the fundamental
physics underlying topologically protected one-way edge states
called the topological photonic state (TPS)[21–36], which is
inspired from the analogy between photon transports in gyro-
magnetic photonic crystals and electron quantum Hall effects
in condensed matter physics systems[37,38].
Most of the previous works rely on band theories and math-

ematically topological concepts to understand the existence of
TPS and have achieved great successes. Nevertheless, only a
few of them have explained the formation mechanism of the
unique behavior of the energy vortex unidirectionally rotating
and cycling around the magnetized gyromagnetic cylinder,
which is the most important feature of TPS; hereafter, we call
it electromagnetic windmill scattering. Generally, there is a sim-
ple thought that this originates from the time reversal symmetry
breaking of the system[21–38]; however, how this general rule of
physics explicitly produces the electromagnetic windmill scat-
tering is obscure. Very recently, Chen et al. qualitatively
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analyzed the formation mechanism of electromagnetic windmill
scattering from the aspect of instantaneous energy flow and viv-
idly constructed the physical picture of TPS in various gyromag-
netic systems[39]. It is a pity that this method cannot give the
explicit solutions that enable one to quantitatively understand
the physical mechanism of the interactions between the electro-
magnetic wave and the gyromagnetic material or structure and
know how to accurately control the electromagnetic scattering
by a magnetized gyromagnetic cylinder.
In this Letter, we present the rigorous solutions to the electro-

magnetic scattering of a magnetized gyromagnetic cylinder via
analytical theory, where the model is schematically illustrated in
Fig. 1(a), and uncover an unusual unidirectionally rotating
windmill scattering phenomenon of electromagnetic waves.
We will disclose and reveal the physical origin of this unique
electromagnetic windmill scattering from well-established fun-
damental principles and quantities of electrodynamics and elec-
tromagnetics, as plotted in Fig. 1(b). We find that the incoming
plane wave can excite unidirectionally rotating polarized mag-
netic charges on the boundary of the magnetized gyromagnetic
cylinder (marked as the dotted arrows). As a result, the scatter-
ing field radiates outward in the radial direction and emits uni-
directionally in the tangential direction (marked as the solid
arrows) to form the unique electromagnetic windmill scattering.
Interestingly, the unidirectional electromagnetic windmill scat-
tering is insensitive to the excitation direction. Moreover, we
also discuss the size dependence of unidirectional windmill scat-
tering by calculating the scattering spectra of the gyromagnetic
cylinder.

2. Analytical Theory

We first present the rigorous analytical solution to the electro-
magnetic scattering of a plane wave by themagnetized gyromag-
netic cylinder. The gyromagnetic cylinder [yttrium-ion-garnet
(YIG)] of radius r with relative permittivity ε1 = 15.26 is
embedded in air (ε2 = 1 and μ2 = 1), as shown in Fig. 1.
When a direct current (dc) magnetic field is applied in the
out-of-plane (z-axis) direction, the permeability tensor of the
magnetized gyromagnetic cylinder is of antisymmetric form
as[14]

μ1 =

0
@ μr iμφ 0
−iμφ μr 0
0 0 1

1
A, (1)

where μr = 1� ω0ωm
ω2
0−ω

2 and μφ =
ωωm
ω2
0−ω

2. ω0 = 2πγH0 is the reso-

nance frequency with γ = 2.8MHz=Oe being the gyromagnetic
ratio, and ωm = 2πγMs is the characteristic circular frequency
withMs being the saturation magnetization (Ms = 1780Gauss).
Without loss of generality, the time dependence of a harmonic

electromagnetic wave is assumed to be e−iωt . The electric and
magnetic fields of the magnetized gyromagnetic cylinder satisfy
the following Maxwell’s equations:

∇ ×H = −iωε0ε1E, ∇ × E = iωμ0μ1H, (2)

where ε0 and μ0 are the vacuum permittivity and permeability,
respectively. Generally, for most anisotropic materials, there is
no symmetry with rotational and/or translational invariance,
so Maxwell’s equations cannot yield to generalized Helmholtz
equations for electric and magnetic fields that allow one to
implement separation of variables[8–13]. Yet, thanks to the spe-
cial permeability tensor of the magnetized gyromagnetic cylin-
der possessing the antisymmetrical imaginary off-diagonal
components, here, Maxwell’s equations can be accurately solved.
To simplify, we only consider the transverse-electric (TE)

incident wave, defined by wave vector k, with its electric field
polarized along the z-axis direction, so �Ez ,Hr ,Hφ� ≠ 0 and
�Hz , Er , Eφ� = 0. In cylindrical coordinates, the plane wave

eikr cos φ can be expanded into the sum of a series of cylindrical
waves

P�∞
n=−∞ inJn�kr�einφ by the Jacobi–Anger identity, so the

fields of every eigenstate have the einφ dependence with φ being
the azimuthal angle and n being the azimuthal quantum num-
ber. Notably, the positive and negative n represent the clockwise
and counterclockwise rotating eigenstates, respectively.
When an incident plane wave with frequency f impinges

upon the magnetized gyromagnetic cylinder, the total field
can be written as the sum of the elementary incident field and
the secondary scattering field arising from the polarized cylin-
der. The solutions of the electric field inside and outside of
the cylinder can be expressed as[4]

Ein
z =

X�∞

n=−∞
indnJn�k1r�einφ, r < a, �3�

Eout
z =

X�∞

n=−∞
in�Jn�k2r� � bnHn�k2r��einφ, r > a, (4)

where k1 = k0
���������
ε1μ1

p
, k2 = k0

���������
ε2μ2

p
, with k0 = ω=c = 2πf =c

being the free-space wave number. The function Hn�k2r�
denotes the nth-order Hankel function of the first kind, which
is chosen because of its asymptotic behavior. When combined
with the factor e−iωt , it represents an outgoing cylindrical wave,
as is required for the secondary scattering field of the polarized
cylinder. Furthermore, the tangential magnetic fields in the
magnetized gyromagnetic cylinder and air are

Fig. 1. Model and physics. (a) Geometry model of analytical theory. (b) Physical
mechanism of electromagnetic windmill scattering.
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Solving Maxwell’s equations together with the boundary con-
ditions yields the scattering coefficients given by

bn =
Rn�k1a�Jn�k2a� − k2Jn�k1a�J 0

n�k2a�
k2Jn�k1a�H 0

n�k2a� − Rn�k1a�Hn�k2a�
, �7�

dn =
k2Jn�k2a�H 0

n�k2a� − k2J
0
n�k2a�Hn�k2a�

k2Jn�k1a�H 0
n�k2a� − Rn�k1a�Hn�k2a�

, �8�

where Rn�k1a� = μ2
μ1
�k1J 0

n�k1a� � μφ
μr

n
a Jn�k1a��. The detailed deri-

vation process can be viewed in Supplementary Materials.

3. Electromagnetic Windmill Scattering

We perform numerical calculations based on the analytical
solutions on the electric field patterns of a left-incident plane
wave at f = 4.0GHz, illuminating the magnetized gyromagnetic
cylinder. The external magnetic field is H0 = 1600Gauss.
Figures 2 and 3 show the electric field distributions at different
time phases for radius R1 = 4.20mm and R2 = 6.76mm, respec-
tively, and one should note thatT is the period of time phases. As
shown in Fig. 2, a clear counterclockwise dipole-like radiation
state is dominantly excited on the cylinder. As time elapses,
the two poles with prominent tails of light, together with the
whole electric field, rotate counterclockwise, leading to the
two-blade windmill scattering electric field distribution (for bet-
ter visual effect, see Visualization 1).
For the case of R2 = 6.76mm, Fig. 3 shows a counterclockwise

quadrupole-like windmill electric field distribution unidirec-
tionally rotating and cycling around the cylinder, also with

prominent tails of light (for better visual effect, see
Visualization 2). Remarkably, these results are completely differ-
ent from the well-known electric field scattering pattern
observed in the nonmagnetized gyromagnetic cylinder and also
have never been reported by analytical theory before. Moreover,
we also calculate the scattering spectra of these two magnetized
gyromagnetic cylinders at different frequencies, and the detailed
results can be seen in Supplementary Materials.
We have shown the electric field distributions of the gyromag-

netic cylinder at different time phases to observe the unidirec-
tional windmill scattering. Here, we proceed to calculate the
energy flux or Poynting vector S = 1

2 Re�E ×H*� distribution
to exhibit the time-averaged responses in both near-field and
far-field. The plane wave at f = 4.0GHz is incident from the left
port (marked as the thick white arrows). The energy flux and
electric field distributions of R1 = 4.20mm and R2 = 6.76mm
are superposed together, as shown in Figs. 4(a) and 4(b). In
near-field, the majority of energy flux is concentrated on the
gyromagnetic cylinder and rotates counterclockwise to form
two clear counterclockwise energy flux loops, while in far-field,
the prominent tails of the dipole and quadrupole exist, as seen by
the thin white arrows in Fig. 4.

Fig. 2. Numerical calculation results of R1 = 4.20 mm. (a) t = 0T, (b) t = T/4,
(c) t = T/2, (d) t = 3T/4.

Fig. 3. Numerical calculation results of R2 = 6.76 mm. (a) t = 0T, (b) t = T/4,
(c) t = T/2, (d) t = 3T/4.

Fig. 4. Energy flux (Poynting vector) distribution of unidirectional windmill
scattering. (a) R1= 4.20 mm, (b) R2= 6.76 mm. The thick white arrows indicate
the left-incident plane wave at f = 4.0 GHz. The thin white arrows represent
the energy flux distribution, and the directions of the thin white arrows indi-
cate the transport direction of energy fluxes.
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4. Mathematical Mechanism

Next, we analyze the mathematical mechanism of nonreciprocal
unidirectional windmill scattering from the electromagnetic
scattering coefficient formulae. We can see that for the magnet-
ized gyromagnetic cylinder, the existence of a nonzero off-diago-
nal component (μφ ≠ 0) induces the appearance of a linear term
related with the azimuthal quantum number n in the tangential
magnetic field, as seen in Eq. (5), so that the symmetry between
positive n and negative n of the tangential magnetic field is bro-
ken. This result indicates that the clockwise and counterclock-
wise rotating tangential magnetic fields are asymmetrical, so
the propagation behaviors of the tangential magnetic field are
nonreciprocal, reflecting the effect of the time reversal symmetry
breaking. On the other hand, for the tangential magnetic field
outside of the cylinder, since it is a nonmagnetic medium, there
is no additional linear term related to n [see Eq. (6)], so the pos-
itive-n and negative-n tangential magnetic fields are symmetri-
cal, and the propagation behaviors of the tangential magnetic
fields are reciprocal.
However, the nonreciprocal propagation of the tangential

magnetic field inside the magnetized gyromagnetic cylinder
can be transferred to the air through the boundary conditions
(i.e., Ez and Hφ are continuous at the boundary) and cause
the term Rn�k1a� [possessing a linear term related to n,
i.e., μ2μ1

μφ
μr

n
a Jn�k1a�] that appears in the scattering coefficients bn

and dn. In this case, Rn�k1a� and R−n�k1a� are linearly indepen-
dent, so the positive and negative nth-order scattering coeffi-
cients of the electric fields are not equal (i.e., bn ≠ b−n and
dn ≠ d−n), indicating that the clockwise and counterclockwise
scattering electric fields are asymmetrical.
Therefore, this mathematical analysis enables us to get a clear

physical picture where the strong imbalance between the asym-
metrical clockwise and counterclockwise rotation eigenstates
forms the traveling-like wave state instead of the standing-like
wave state when in the reciprocal case. In addition to radiating
outward, the scattering wave will rotate and cycle around the
magnetized gyromagnetic cylinder, leading to the generation
of the unique unidirectional windmill scattering. This physical
picture given by the mathematical analysis is completely consis-
tent with the peculiar electric field transport characteristics as
calculated by the analytical theory in Section 3. Notably, when
the cylindrical coordinate transfers to the rectangular coordi-
nate, the nonzero off-diagonal component will break the sym-
metry of forward and backward scattering coefficients, instead
of the clockwise and counterclockwise scattering coefficients.
On the contrary, when the external magnetic field is removed,

the permeability tensor reduces to scalar, i.e., μr = 1 and μφ = 0.
The linear term related to n disappears, i.e., Rn�k1a� = k1J

0
n�k1a�.

In this case, Rn�k1a� and R−n�k1a� are linearly dependent, and
the positive and negative nth-order scattering coefficients are the
same, i.e., bn = b−n and dn = d−n. As a result, the completely bal-
anced interference of the symmetrical clockwise and counter-
clockwise rotation eigenstates forms the standing-like wave
state instead of the traveling-like wave state, so the scattering
field only radiates outward in the radial direction without any

deflection in the tangential direction. Thus, the scattering
electromagnetic field will be symmetrical about the direction
of the incoming plane wave, in complete consistence with the
scattering field distribution around a nonmagnetic dielectric
cylinder[4].

5. Physical Mechanism

Section 3 has shown the unidirectional windmill scattering cal-
culated by analytical theoretical solutions, and this unique phe-
nomenon is completely consistent with the clear physical picture
given bymathematical analysis in Section 4, but the physical ori-
gin is still unclear. From the basic physical point of view, the
macroscopic electromagnetic scattering by the medium should
be the result of the interaction between the incoming electro-
magnetic field and the polarization charge or the magnetized
current. Thus, solving the polarized magnetic charge distribu-
tion within the magnetized gyromagnetic cylinder becomes
the key to revealing the microscopic physical origin of the mac-
roscopic electromagnetic windmill scattering.
We obtain the polarized magnetic charge density via the for-

mula ρm = −μ0∇ · M based on simultaneous equations ∇ · B =
0 and B = μ0�H �M�, where M, B, and H are the magnetiza-
tion, magnetic strength, and magnetic field strength, respec-
tively[40]. The magnetization M = χmH = �μ − 1�H, where χm
is the magnetic susceptibility of the medium. In the absence
of an external magnetic field, χm = 0 and μ = 1 in both the
gyromagnetic cylinder and air, so their magnetizations are zero
(i.e.,M1 =M2 = 0). Instead, when the external magnetic field is
applied, χm in air is still zero (M2 = 0), but χm in the magnetized
gyromagnetic cylinder becomes amagnetic susceptibility tensor.
For the magnetized gyromagnetic cylinder, M1 ≠ 0, and we
obtain

Mr =
1

ωμ0μ1

�
�μr − 1�

�
n
r
Ez �

μφ
μr

∂Ez

∂r

�
− μφ

�
∂Ez

∂r
� μφ

μr

n
r
Ez

��
,

(9)

Mφ =
i

ωμ0μ1

�
�μr − 1�

�
μφ
μr

n
r
Ez �

∂Ez

∂r

�
− μφ

�
n
r
Ez �

μφ
μr

∂Ez

∂r

��
,

(10)

Mz = 0: �11�

Obviously, the positive and negative nth-orderMr andMφ of
themagnetized gyromagnetic cylinder are not equal, so themag-
netization is also asymmetrical. Then, the distribution of polar-
ized magnetic charge density ρm = −μ0∇ · M can be derived.
We calculate the polarized magnetic charge distributions of

the magnetized gyromagnetic cylinder for R1 = 4.20mm and
R2 = 6.76mm at different time phases and display the results
in Figs. 5 and 6, respectively. The polarized magnetic charges
are dominantly concentrated on the boundary of the cylinder,
and the positive and negative of them represent the expansion
and contraction of the scattering field during the rotation
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motion, respectively. We can see that their rotation motions are
clearly visualized, which are completely consistent with the
rotating and cycling windmill motion of their electric fields.
For the case of R1 = 4.20mm (see Fig. 5), as time elapses, the
polarized magnetic charges rotate counterclockwise along the
boundary of the magnetized gyromagnetic cylinder (for better
visual effect, see Visualization 3); while for the case of R2 =
6.76mm (see Fig. 6), similarly, these polarized magnetic
charges also rotate counterclockwise along the boundary with
time elapsing (for better visual effect, see Visualization 4).
Physically, the presence of an external magnetic field breaks
the time reversal symmetry of the gyromagnetic cylinder and
leads to the microscopic asymmetrical response (molecular cur-
rent) of the magnetized gyromagnetic cylinder. As a result, the
incoming plane wave can excite the unidirectional rotation of

polarized magnetic charges on the boundary of the magnetized
gyromagnetic cylinder, so the scattering field can radiate out-
ward in the radial direction and emit unidirectionally in the tan-
gential direction to eventually form the electromagnetic
windmill scattering.

6. Scattering Properties in Various Directions

More excitingly, this unique unidirectional windmill scattering
is insensitive to the excitation direction. The plane wave incident
in various directions always excites the counterclockwise rota-
tion scattering field. For example, when the right-incident
and up-incident plane waves at f = 4.0 GHz illuminate on the
magnetized gyromagnetic cylinder with R1 = 4.20mm, they
both excite the dipole-like windmill scattering state that rotates
counterclockwise (instead of clockwise) and only have a
time phase difference in their field distribution, as shown in
Figs. 7(a) and 7(b) (for better visual effect, see Visualization 5
and Visualization 6). In contrast, the scattering field of the non-
magnetic cylinder is very different from the magnetic one. We
proceed to perform a numerical calculation for the dipole-
like scattering of the well-studied nonmagnetized cylinder
(εn = 15.26, μn = 1, R0 = 5.63mm) at the same frequency
f = 4.0GHz. As shown in Figs. 7(c) and 7(d), when the right-
incident and up-incident plane waves illuminate on the non-
magnetized cylinder, although they both excite the dipole-like
scattering state that radiates in the fixed position, their scattering
field distributions are completely distinguished. The dipole scat-
tering fields excited by the right-incident and up-incident plane
waves distribute along the x and y directions, respectively (for
better visual effect, see Visualization 7 and Visualization 8).
As we can see, the scattering field of the nonmagnetic cylinder
is very sensitive to the excitation direction because of the absence
of a unidirectional polarized magnetic charge at the interface of
the nonmagnetic cylinder.

Fig. 5. Polarized magnetic charge distribution of a magnetized gyromagnetic
cylinder with R1 = 4.20 mm.

Fig. 6. Polarized magnetic charge distribution of a magnetized gyromagnetic
cylinder with R2 = 6.76 mm.

Fig. 7. Numerical calculation results of the incident plane waves in different
directions. (a), (b) Magnetized gyromagnetic cylinder. (c), (d) Nonmagnetized
gyromagnetic cylinder. (a), (c) Right-incident. (b), (d) Up-incident.
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7. Size Dependence of Unidirectional Windmill
Scattering

Finally, we proceed to discuss the size dependence of unidirec-
tional windmill scattering by calculating the normalized scatter-
ing spectra of the gyromagnetic cylinder at a radius ranging from
3.00 mm to 10.00 mm. The excited frequency of the left-incident
plane wave is f = 4.0GHz. As illustrated in Fig. 8, three high
peaks exist at R1 = 4.20mm, R2 = 6.76mm, and R3 = 9.11mm.
The electric field and energy flux distributions of these three
cases are plotted as the insets of Fig. 8. One can see that there
are dipole-like, quadrupole-like, and hexapole-like electric field
distributions in the cases of R1, R2, and R3, respectively, and this
is because the excitation of these multipole states strongly
enhances the scattering strength. Notably, the nonreciprocal
scattering field also can be excited at other radii in the presence
of the gyromagnetic effect of the magnetized gyromagnetic cyl-
inder, but the clear counterclockwise unidirectional multipole
windmill scattering only can be formed at these special radii.

8. Discussion and Conclusions

The analytical solutions of electromagnetic wave scattering by a
magnetized gyromagnetic cylinder and explicit formulae on the
spatial–temporal evolution of two critical physical quantities as
the electromagnetic field and polarized magnetized charges en-
able us to comprehend the formation mechanism of unusual
electromagnetic windmill scattering with prominent tails of light
both in mathematics and in physics. Interestingly, this phe-
nomenon is very similar to the windmill fireworks seen in real
life. When the launcher is stationary, the fireworks only spray in
the radial direction, whereas when the launcher rotates counter-
clockwise, the launcher will provide a tangential speed for the
sprayed fireworks to produce the windmill firework emission

pattern (for better visual effect, see Visualization 9). We also
provide the distributions of the windmill firework at different
times in Supplementary Materials. Moreover, although we only
focus on the unidirectional windmill scattering in themicrowave
range, these results are also suitable for other frequency ranges,
even the optical range[41,42], although the gyromagnetic effect of
gyromagnetic materials is quite weak at optical frequencies.
In conclusion, we have shown the rigorous explicit solutions

and discovery of an unusual electromagnetic windmill scattering
by a magnetized gyromagnetic cylinder. We have clarified the
underlying mathematical and physical origins via analytical
theory and numerical calculation and found that the unbalanced
scattering coefficients for the same-order clockwise and counter-
clockwise cylindrical waves and unidirectionally rotating and
cycling polarized magnetic charges along the air-cylinder boun-
dary are the critical physical entities governing the observed
unique nonreciprocal windmill scattering of the electromagnetic
wave and field. Our results will have great significance not only
in basic electrodynamics, electromagnetics, and topological pho-
tonics, but also in novel design of photonic devices[43,44].
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