VO$_x$/NaVO$_3$ nanocomposite as a novel saturable absorber for passive Q-switching operation

Linghao Kong (孔令豪)1, Hongwei Chu (褚宏伟)1, Na Li (李娜)2, Han Pan (潘瀚)1, Shengzhi Zhao (赵圣芝)1, and Dechun Li (李德春)1

1School of Information Science and Engineering, Shandong University, Qingdao 266237, China
2School of Physics and Technology, University of Jinan, Jinan 250022, China

*Corresponding author: hongwei.chu@sdu.edu.cn
**Corresponding author: dechun@sdu.edu.cn
Received January 7, 2022 | Accepted February 18, 2022 | Posted Online March 10, 2022

We report VO$_x$/NaVO$_3$ nanocomposite as a novel saturable absorber for the first time, to the best of our knowledge. The efficient nonlinear absorption coefficient and the modulation depth are determined by the Z-scan technology. As a saturable absorber, a passively Q-switched Nd-doped bulk laser at 1.34 μm is demonstrated, producing the shortest pulse duration of 129 ns at a repetition rate of 274 kHz. In the passively Q-switched Tm:YLF laser with the prepared saturable absorber, the shortest pulse duration was 292 ns with a repetition rate of 155 kHz. Our work confirmed the saturable absorption in VO$_x$/NaVO$_3$ for possible optical modulation in the near-infrared region.

Keywords: nonlinear optical properties; saturable absorber; VO$_x$/NaVO$_3$ composite; Q-switching.
DOI: 10.3788/COL202220.051601

1. Introduction

Pulsed lasers operating in the near-infrared (NIR) region are of great importance in fields such as optical communications, imaging, and material processing$^{[1-3]}$. Owing to the compactness, high efficiency, and low cost, passively Q-switched lasers are an ideal technology to achieve pulsed lasers in the nanosecond level$^{[4]}$. As a common optical modulator, the saturable absorber is an essential device for the optical pulse generation. In decades, with the development of graphene$^{[5]}$, two-dimensional (2D) materials have been a hot research topic as a saturable absorber to enable Q-switching and mode-locking operations. In comparison with the conventional bulk saturable absorber and ultra-long-period grating$^{[6]}$, 2D materials possess unique advantages such as short relaxation time, efficient broadband optical response, and low cost$^{[7-11]}$. Indeed, black phosphorus (BP)$^{[12]}$, topological insulators (TIs)$^{[13]}$, transition metal oxides (TMOs)$^{[14]}$, transition metal dichalcogenides (TMDs)$^{[15]}$, MXenes$^{[16]}$, and metal-organic frameworks (MOFs)$^{[17]}$ can be applied as the saturable absorber in versatile laser systems. However, these saturable absorbers still suffer some disadvantages.

As a binary TMO, vanadium oxides (VO$_x$) are of great interest because they possess controllable electronic and optical properties$^{[18,19]}$. As a typical VO$_x$, vanadium pentoxide (V$_2$O$_5$) suffers from low electronic conductivity and structural instability$^{[20,21]}$. To overcome the low stability and electronic conductivity, other metal cations are introduced into the V$_2$O$_5$ interlayer, since those ions can act as “pillars” to improve structural stability and provide a fast diffusion path$^{[22-24]}$. Recently, sodium metavanadate (NaVO$_3$) is proposed to boost the charge transfer$^{[25]}$. On the other hand, the bandgap of V$_2$O$_5$ is roughly 2.3 eV$^{[24,25]}$, which cannot absorb the NIR photons, while the bandgap of VO$_x$ with other oxidation states such as VO$_2$, V$_2$O$_3$, and V$_3$O$_5$ could be metallic$^{[25]}$, which can absorb the photons within the full optical span.

Researchers have proposed the composite strategy to boost the nonlinear optical properties$^{[25-27]}$. Up to date, a lot of hybridized saturable absorbers were prepared with graphene-Bi$_2$Te$_3$$^{[28]}$, MoS$_2$-Sb$_2Te_3$-MoS$_2$$_{[29]}$, and Fe$_3O_4$-MXene$^{[30-32]}$, clearly showing the enhanced saturable absorption. In fact, the polyaniline (PANI)/NaVO$_3$ composite was prepared to obtain the large permittivity as well as the optical absorption$^{[33]}$. Thus, VO$_x$/NaVO$_3$ composite is expected to enhance the optical features.

In this Letter, to study the nonlinear optical properties of the VO$_x$/NaVO$_3$ composite material, we used the open-aperture Z-scan technique and measured the effective absorption coefficient, modulation depth, and saturation light intensity at 1.3 and 2 μm. The large modulation depth of 13% at 1.3 μm and the good effective nonlinear absorption coefficient of 0.81 cm/GW at 2 μm were shown. These results revealed that the composite material was a good saturable absorber for pulse...
manipulation. Subsequently, a passively Q-switched laser was operated by using VO$_x$/NaVO$_3$ as a saturable absorber. When the operating wavelength was 1.3 μm, the shortest pulse width was 129 ns, and the maximum repetition rate was 274 kHz. Our work confirmed that VO$_x$/NaVO$_3$ composite material could be a promising broadband nonlinear material for ultrafast photonics.

2. Materials and Methods

We took V$_2$O$_3$ powder and NaVO$_3$ powder with a mole ratio of 2:3 as the raw materials. After completely ball-milling together, V$_2$O$_3$/NaVO$_3$ powder was dispersed in N-methyl-2-pyrrolidone (NMP) and ultrasonically bathed for 6 h. The dispersion solution was centrifuged at 3000 r/min for 15 min. Next, the centrifuged supernatant was dropped slowly onto a quartz substrate with a pipette. The quartz substrate was sucked onto the spinner to ensure that the supernatant was evenly covered on the quartz substrate. Then, the sample was placed in a vacuum drying oven at 80°C for 4 h. Finally, the uniform V$_2$O$_3$/NaVO$_3$ nanocomposite was prepared as a thin membrane.

3. Experiment and Results

The morphology and structure of the VO$_x$/NaVO$_3$ composite material were studied by different characterization methods. Figure 1(a) shows an image of the scanning electron microscope (SEM), showing the small flake-like shape. Figures 1(b)–1(d) illustrate the energy dispersive spectrometer (EDS) elemental mappings of O, V, and Na, respectively, which display that the element distribution was uniform. A high-resolution transmission electron microscope (HRTEM) picture is shown in Fig. 1(e). The lattice plane separation was 0.3447 nm, corresponding to the (220) crystal plane separation (0.3439 nm) of NaVO$_3$. In the selected area electron diffraction (SAED) pattern of Fig. 1(f), d1 was 0.325 nm, d2 was 0.185 nm, and d3 was 0.145 nm, corresponding to the (121), (013), and (512) crystallographic planes of NaVO$_3$, respectively. Figure 1(g) shows the X-ray diffraction (XRD) pattern of the VO$_x$/NaVO$_3$ composite material. The diffraction peaks of V$_2$O$_3$ (PDF#34-0187) were marked with asterisks, NaVO$_3$ (PDF#32-1197) with circles, and V$_3$O$_5$ (PDF#38-1181) with rhombus. It can be seen from the XRD pattern that VO$_x$ and NaVO$_3$ were well composited.

Figure 1(h) clearly shows the six Raman peaks of the VO$_x$/NaVO$_3$ composite material. The previously reported vibration modes of NaVO$_3$ were consistent with 170.9 cm$^{-1}$, 348.3 cm$^{-1}$, and 631.1 cm$^{-1}$[34]. The same vibration modes of V$_2$O$_3$ and NaVO$_3$ were at 242.9 cm$^{-1}$ and 507.3 cm$^{-1}$[34–36]. The vibration mode of V$_3$O$_5$ was classified as 422.3 cm$^{-1}$[37]. The above characterization techniques presented the morphology and structure of VO$_x$/NaVO$_3$ composite material, which fully verified the effective composite of VO$_x$ and NaVO$_3$.

Subsequently, the nonlinear optical properties of VO$_x$/NaVO$_3$ composite were measured by the conventional open-aperture Z-scan technique. The excitation sources were homemade actively Q-switched lasers emitting the pulse duration of 50 ns with a repetition rate of 800 Hz at 1.3 and 2 μm, respectively. A convex lens with a focal length of 100 mm was applied to converge the optical beam. Figure 2 displays the typical nonlinear transmission curves versus the relative distance to the focal lens (Z) with both excitation wavelengths. Clearly, the VO$_x$/NaVO$_3$ composite performed the nonlinear saturable absorption. The transmission curve can be fitted by[38]
where β_{eff} is the effective nonlinear absorption coefficient, L_{eff} is the effective length of the sample, I_0 is the peak intensity on the axis, and z_0 is the Rayleigh range.

Then, we investigated the variation of the transmittance with the change of laser peak density. The fitting equation of experimental data is as follows:

$$T = 1 - \Delta T \exp \left(-\frac{I}{I_s} \right) - T_{\text{ns}}. \quad (2)$$

Herein, ΔT is the modulation depth, I_s is the saturation intensity, and T_{ns} is the nonsaturable losses. As shown in Fig. 2, as the light intensity incident on the sample increased gradually, the transmittance increased gradually at first and then flattened out gradually. This was because with the increase of incident intensity, the absorption coefficient of composite material decreased and the transmittance no longer increased, that is, the material was bleached.

Table 1 summarizes the nonlinear optical parameters of composite materials at 1.3 and 2 μm. These parameters verified that VO$_x$/NaVO$_3$ composite material possessed good nonlinear absorption and the potential for optical modulators.

The excellent nonlinear optical absorption response of the VO$_x$/NaVO$_3$ composite indicated that it could be used as a saturable absorber to generate Q-switched pulses. We demonstrated the passively Q-switched bulk lasers operation at 1.3 and 2 μm with the prepared VO$_x$/NaVO$_3$ composite as the saturable absorber for the first time, to the best of our knowledge. In this section, a compact and simple plane-plane resonator with a length of 20 mm was set up to realize the Q-switching operations. For the Q-switching operation at 1.3 μm, the laser crystal was an a-cut 1% (atomic fraction) Nd:GdVO$_4$ with dimensions of 3 mm \times 3 mm \times 10 mm. During the experiment, the laser crystal was maintained at 15°C to efficiently remove the thermal load. A fiber-coupled 808 nm laser diode (LD) was employed as the pump. The output coupler (M2) possessed a partial transmission ratio of 3.8%. The whole configuration of the laser cavity can be seen in Fig. 3.

For the continuous-wave (CW) running at 1.3 μm without the saturable absorber inserted into the cavity, the output power increased almost linearly after the threshold. Under the maximum pump power of 3.43 W, the highest output power was 782 mW. Then, the prepared saturable absorber was inserted into the resonator, and the threshold power for the stable Q-switching operation was 2.75 W. Note that VO$_x$ is metallic, and VO$_x$ can absorb the photons in the NIR region at 1.3 μm as well as 2 μm. With the increased pump power, the photogenerated electrons and holes separated and transferred in the VO$_x$/NaVO$_3$ nanocomposite, leading to the enhanced nonlinear absorption properties. Until the VO$_x$/NaVO$_3$ nanocomposite was bleached, when the conduction band was fully occupied by the electrons and the valence band was completely dominated by the holes, further optical absorption became impossible owing to the Pauli blocking principle. The losses can be smaller than the gain in the resonator, generating a giant Q-switched pulse. As shown in Fig. 4(a), at the highest pump level, the maximum output power at 1.3 μm was 79 mW. The low output power of the passive Q-switching operation was attributed to the induced extra loss of the saturable absorber. The pulse duration and repetition rate as functions of the pump level are illustrated in Fig. 4(b). It can be seen that the pulse width monotonically decreased, which can be related to the gain factor, while the corresponding repetition rate monotonically increased. When the

<table>
<thead>
<tr>
<th>Wavelength (μm)</th>
<th>β_{eff} (cm/GW)</th>
<th>ΔT (%)</th>
<th>I_s (MW/cm2)</th>
<th>T_{ns} (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3</td>
<td>-0.66</td>
<td>13</td>
<td>59.7</td>
<td>10</td>
</tr>
<tr>
<td>2.0</td>
<td>-0.81</td>
<td>10.5</td>
<td>49.4</td>
<td>6</td>
</tr>
</tbody>
</table>

Fig. 4. Passive Q-switching operation at 1.3 μm with VO$_x$/NaVO$_3$ saturable absorber. (a) CW and Q-switched output power, (b) pulse duration and repetition rate, (c) pulse train, and (d) temporal pulse profile.
incidence pump power was 3.43 W, the minimum pulse width was 129 ns, and the maximum repetition rate was 274 kHz. At this time, the pulse train and single pulse profile are shown in Figs. 4(c) and 4(d), respectively. The maximum peak power of Q-switching was 2.24 W, and the corresponding single pulse energy was 289 nJ.

Then, we investigated the nonlinear saturable absorption properties of VOx/NaVO3 composite at 2 μm. In this section, the laser medium was altered by a 1% (atomic fraction) thulium-doped yttrium lithium fluoride (Tm:YLF) crystal with a length of 8 mm. The pump source was a 794 nm LD with a numerical aperture of 0.22. The pump beam was focused into the laser crystal with a spot size of 400 μm in diameter. The output coupler had a transmission ratio of 5% at 2 μm. In Fig. 5(a), the incident pump power threshold for Q-switched laser output was 2.6 W. When it increased to 3.8 W, the maximum CW and Q-switched output powers were 150.4 mW and 50.7 mW, respectively. The small gain of Tm:YLF and the large loss induced by the saturable absorber resulted in the low output power. Meanwhile, as shown in Fig. 5(b), the minimum pulse width was 292 ns, and the maximum repetition rate was 155 kHz. Figure 5(c) shows the corresponding pulse train diagram, and Fig. 5(d) displays the corresponding single pulse. The corresponding highest peak power was 1.1 W, and the maximum single pulse energy was 327 nJ.

Table 2 summarizes the passive Q-switching performances with the VOx/NaVO3 composite saturable absorber and other mainstream saturable absorbers. As shown in Table 2, the composite material can be compared with the mature nanomaterial-based saturable absorbers, indicating that VOx/NaVO3 composite is a promising nonlinear optical material for ultrafast photonic applications.

4. Conclusion

In summary, the VOx/NaVO3 composite material was synthesized and characterized. We used the open-aperture Z-scan technique to investigate the nonlinear absorption properties of VOx/NaVO3 saturable absorber. The composite material displayed a large modulation depth and a high effective nonlinear absorption coefficient for pulsed laser generation. Using VOx/NaVO3 composite saturable absorber, the passively Q-switched Nd:GdVO3 and Tm:YLF lasers were realized for the first time, to the best of our knowledge, emitting the shortest pulse duration of 129 ns. These results indicated that VOx/NaVO3 composite could be a promising optical modulation device in ultrafast photonics.

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Nos. 12174223, 12004213, 21872084, and 62175128). H. C. thanks the the Young Scholar Program of Shandong University for the financial support.

Table 2. Comparison of Passive Q-Switching Performance Parameters of Different SAs at 1.3 and 2 μm.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BP</td>
<td>Nd:YVO4</td>
<td>1.3</td>
<td>72</td>
<td>625</td>
<td>[40]</td>
</tr>
<tr>
<td></td>
<td>Tm:HoLuVO4</td>
<td>2</td>
<td>2890</td>
<td>128.4</td>
<td>[41]</td>
</tr>
<tr>
<td>MoS2</td>
<td>Nd:LuAG</td>
<td>1.3</td>
<td>188</td>
<td>73</td>
<td>[42]</td>
</tr>
<tr>
<td></td>
<td>Tm:YAP</td>
<td>2</td>
<td>916</td>
<td>105.1</td>
<td>[43]</td>
</tr>
<tr>
<td>Fe2O3 at Ti3C2</td>
<td>Nd:YVO4</td>
<td>1.3</td>
<td>181</td>
<td>209</td>
<td>[32]</td>
</tr>
<tr>
<td></td>
<td>Tm:YLF</td>
<td>2</td>
<td>320</td>
<td>118</td>
<td>[32]</td>
</tr>
<tr>
<td>VOx/NaVO3</td>
<td>Nd:GdVO4</td>
<td>1.3</td>
<td>129</td>
<td>274</td>
<td>This</td>
</tr>
<tr>
<td></td>
<td>Tm:YLF</td>
<td>2</td>
<td>292</td>
<td>155</td>
<td>work</td>
</tr>
</tbody>
</table>

References

22. Y. Xu, X. Han, L. Zheng, W. Yan, and Y. Xie, “Pillar effect on cyclability enhancement for aqueous lithium ion batteries: a new material of β-vanadium bronze Na0.33V2O5 (M = Ag, Na) nanowires,” J. Mater. Chem. 21, 14466 (2011).