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Machine learning can effectively accelerate the runtime of a computer-generated hologram. However, the angular spec-
trummethod and single fast Fresnel transform-based machine learning acceleration algorithms are still limited in the field-
of-view angle of projection. In this paper, we propose an efficient method for the fast generation of large field-of-view
holograms combining stochastic gradient descent (SGD), neural networks, and double-sampling Fresnel diffraction
(DSFD). Compared with the traditional Gerchberg–Saxton (GS) algorithm, the DSFD-SGD algorithm has better reconstruction
quality. Our neural network can be automatically trained in an unsupervised manner with a training set of target images
without labels, and its combination with the DSFD can improve the optimization speed significantly. The proposed DSFD-Net
method can generate 2000-resolution holograms in 0.05 s. The feasibility of the proposed method is demonstrated with
simulations and experiments.
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1. Introduction

Focus cues, image quality, field of view (FOV), and eye box are
key issues in near-eye displays such as virtual reality and aug-
mented reality[1,2]. Various optical schemes are adopted and
applied in near-eye display realization to design more portable
and compact near-eye display devices, such as coaxial prisms,
planar displays based on transparent film arrays, freeform sur-
faces, multiplayer displays with directional backlighting, and
stereoscopic see-through retinal projection[1–4]. The holo-
graphic near-eye display has achieved great progress in recent
years[4–10]. The holographic near-eye display is a competitive
way to realize near-eye displays because of its ability to meet
compact structures and to reproduce three-dimensional (3D)
images for a realistic and comfortable viewing experience[11].
The Nyquist criterion limits the size of the reconstructed

image when employing a standard diffraction method in com-
putational holography, either the Fresnel diffraction algorithm
or the Fraunhofer diffraction algorithm[12]. In recent years,
researchers have tried to investigate computational holographic
diffraction algorithms for large FOVs, such as the curved spatial
light modulator (SLM) array method[13], curved hologram
method[14], and time-multiplexing method[15]. By using spheri-
cal beam lighting, Chang et al.[16] and Qu et al.[17] suggested an

image amplified lensless holographic projection. However, the
evaluation of their computer-generated hologram (CGH)
requires a sophisticated iterative algorithm that is unfortunately
time-consuming. In each iteration of the calculation, several
Fourier transforms and inverse Fourier transforms have to be
implemented. As the resolution of the image increases, the com-
putation time increases accordingly. In order to accelerate the
computing speed, machine learning technology has been used
in the field of optical information processing[18–20]. Peng et al.[7]

and Wu et al.[8] proposed to compute the CGH by machine
learning methods. With the help of machine learning methods,
the time for calculating the CGH is reduced to less than 0.2 s.
However, their networks can only encode the CGH based on
the single fast Fourier transform (S-FFT) and the angular spec-
trum diffraction algorithms and thus cannot obtain large FOV
angles. Namely, it is not large enough for binocular observation
for near-eye display.
To overcome the aforementioned FOV and time-consuming

issues, we present a method combining the machine-learning-
based technique with the lensless holographic projection. This
method is based on the double-sampling Fresnel diffraction
(DSFD) algorithm[17] and machine learning method for calcu-
lating the hologram with a phase-only SLM. Both the simulation
and experiments are performed, and the evidence demonstrates
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that the proposed method is able to provide an enlarged and
qualified holographic image. The hologram can be real-time
generated with high resolution. Therefore, the proposedmethod
may hopefully find its application in near-eye display devices.

2. Methods

In a holographic display system, finding the phase valueϕ on the
SLM plane that best approximates the target image can be for-
mulated as solving an optimization problem of the form

bϕ = argminfL�s · f �ϕ�,Y �g, (1)

where the function f �ϕ� describes the light propagation, Y is the
amplitude of the target image, L represents the loss function, and
s is the scale factor of the system. The optical system not only
determines the imaging quality of the projection but also is
one of the most critical factors that affects the numerical calcu-
lation of diffraction propagation.
We discuss an intuitive reason for the use of the DSFD algo-

rithm as the light propagation function. In a near-eye display
system, a large FOV is a vital factor and is determined from
the holographic image projection. We evaluate several lensless
light propagation algorithms, including the S-FFT, the angular
spectrum method (ASM), the DSFD, and the three-step diffrac-
tion[21]. Among these methods, both the S-FFT and ASM algo-
rithms employ a plane wave as the light source, and hence the
size of output images is limited. Although the three-step diffrac-
tion can obtain the largest field in the image reconstruction, the
zeroth-order output and the first-order output overlap each
other[21]. Therefore, we use the dispersive spherical wave as
the light source of the system and implement the DSFD for cal-
culating the light propagation. A schematic illustration of the
holographic image projections with plane wave illumination
and a diverging light source is presented in Fig. 1.
Figure 1(a) shows the scheme of CGH calculation for the S-

FFT algorithm. The complex amplitude distribution Ui�xi� on
the image plane is given by

Ui�xi� = exp

�
−
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in which USLM�xSLM� represents the complex amplitude of the
SLM, and z is the distance between the CGHplane and the image
plane.
The image size of S-FFT algorithm Li is thus given by

Li = λz=ΔxSLM: (3)

Here, λ is the wavelength, andΔxSLM presents the pixel size of
the SLM.
As depicted in Fig. 1(b), the diverging spherical wave propa-

gates through two planes, the first plane is the hologram plane,
and the second one is the image plane. According to the Fourier
optics, the propagation of the light wave can be regarded as two

steps. In the first step, since the SLM is illuminated by a diverg-
ing light wave, the procedure from the hologram plane to the
point light source can be taken as the inverse Fraunhofer diffrac-
tion. The complex amplitude distributionUs on the source plane
is given by

Us�xs� = exp

�
ikx2s
−2r

�
F−1�USLM�xSLM��, (4)

where F−1 represents the inverse Fourier transform, and k =
2π=λ is the wave number. In the second step, the procedure from
the point light source to the image plane can be regarded as the
Fresnel diffraction. The complex amplitude distribution Ui on
the image plane is thus expressed as

Ui�xi� = exp

�
−

ikx2i
2�z � r�

�
F

�
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−
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��
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Since the Fourier transform is used in the above diffraction
procedures, the sampling interval should be calculated accord-
ing to

Δxs =
λr

LSLM
, Δxi =

λ�r � z�
NΔxs

: �6�

The maximal size of the diffraction image is determined by

Li =
z � r
r

LSLM, �7�

Fig. 1. Principle of S-FFT and DSFD algorithms for lensless holographic pro-
jection. (a) S-FFT algorithm with plane wave illumination; the maximum pro-
jecting image size is limited by the Nyquist criterion. (b) DSFD algorithm with
diverging point light source; the image size is larger.
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where LSLM is the size of the SLM itself, and r is the distance
between the point source and the SLM.
The use of the diverging wave as the light source may enlarge

the image sizes with a ratio depending on the relation of r and z.
According to Eqs. (3) and (7), Fig. 2 shows the comparison
between the image size for the S-FFT algorithm based on plane
wave illumination and that of the DSFD algorithm based on a
diverging point light source under the same diffraction distance.
It can be clearly observed that the DSFD algorithm can be used
to enlarge the image size.
The procedure for calculating the resulting light field on the

image plane is shown in Eq. (5). Evidently, the complex ampli-
tude representation on the SLM plane is required to display such
holograms. Usually, SLMs are classified into phase-only, ampli-
tude-only, and complex amplitude modulation types. Aside
from availability, phase-only SLMs are often preferred because
of their high light efficiency. Notably, light is only steered but not
attenuated. Nevertheless, calculating holograms that function
with phase-only SLMs is one of the main challenges in develop-
ing holographic displays. The common method to encode the
complex amplitude CGH into phase-only CGH is an iterative
phase optimization. The iterative Gerchberg–Saxton (GS)
algorithm is the standard way to solve the problem of phase
retrieval of a field on two separate planes, as shown in Fig. 3.

Unfortunately, the GS algorithm inevitably requires long com-
putation time and leads to serious speckle noise in the image
reconstruction.
In order to further improve the image quality and reduce the

calculating time of the CGH, the method based on the combi-
nation of the DSFD algorithm and machine learning is pro-
posed. Gradient descent is a way to minimize an objective
function parameterized by a model’s parameters by updating
the parameters in the opposite direction of the gradient of the
objective function to the parameters. We first implement sto-
chastic gradient descent (SGD) to optimize the loss function
in Eq. (1); see Fig. 4. We give an initial random phase on the
SLM plane and calculate the complex field on the image plane
with the DSFD algorithm. Then, we calculate the loss between
the target image and the simulated projection image. Finally,
we backpropagate the error between the target images and sim-
ulate reconstruction with a stochastic descent optimization algo-
rithm to update the phase-only holograms. Since the iterative
procedure of the SGD does not perform the inverse calculation
of the light propagation and only needs to calculate the diffrac-
tion once, time consumption is only half of the traditional GS
method for each epoch. In addition, by adjusting the learning
rate, the SGD algorithm converges much faster than the tradi-
tional GS method.
Despite the fact that the SGD algorithm can reduce the com-

putation time of holograms bymore than half, we still need a fast
way to obtain the phase-only hologram. We then combine the
above DSFD algorithm with a neural network to form our
DSFD-Net model. The DSFD-Net model can be trained in an
unsupervised learning method of the mapping from the target
image to the hologram without labels. The generation and
reconstruction of phase-only CGH can be depicted as the encod-
ing and decoding process of target images. Our neural network
works as the encoder part in the system and translates the target
image to the corresponding phase-only CGH. The output of the
network is the input of our decoder. The decoding part is the
fixed DSFD model that has been described above. The architec-
ture of our training procedure and the U-Net is shown in Fig. 5.
As an unsupervised learning model, the data sets and validation
sets do not need to be labeled.
The U-Net model uses a down-sampling and then up-sam-

pling structure. The use of a skip connection at the same stage
ensures that the final CGH output incorporates more low-level

Fig. 2. Projection image size of the S-FFT algorithm and DSFD algorithm,
where the wavelength is 532 nm, pixel size is 8 μm, the number of pixels
is 1920, and the distance between the point light source and the SLM plane
is 2.6 cm.

Fig. 3. GS algorithm workflow for computing a phase-only CGH from target
image.

Fig. 4. SGD algorithm workflow for computing a phase-only CGH from target
image.
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features and retains all the information in the image. This advan-
tage is very suitable for CGH computation. The length and width
of the image tensor are reduced by half after each down-sam-
pling in our U-Net, and the geometric feature extraction of
the input image is realized after down-sampling is repeated
six times. When the up-sampling of next six times is imple-
mented, the reconstructed original size image tensor is obtained.
In order to avoid the disappearance of the gradient during the
network training, the residual connection is employed to realize
the cross-layer transfer of the gradient. After each convolution,
batch normalization is performed to avoid overfitting. In the U-
Net training procedure, we use the amplitude of the 1920 × 1080
image as the training input. The U-Net outputs the correspond-
ing CGH. We simulate the physical diffraction processing with
the CGH generated by our U-Net.

3. Simulation

We simulate the light propagation on Google Colab with
PyTorch, which is essentially based on python and compute uni-
fied device architecture (CUDA), to demonstrate the perfor-
mance of different algorithms with graphics processing units
(GPUs). The GPU is NVIDIA Tesla P100 with 16 GB memory.
To keep consistent with the experimental situation, the pixel
pitch of the CGH is set as 8 μm, and the resolution is
1920 × 1080. The wavelength of the laser is 532 nm. The dis-
tance between the diverging point light source and the hologram
is 2.6 cm, and the propagation distance is 26 cm. Figure 6 shows
the simulated results of the SGD method and GS method. We
use the mean square error (MSE) and peak signal-to-noise ratio
(PSNR) to quantify the quality of the reconstructed images.

A gray-level image in Fig. 7 is employed to demonstrate the
effectiveness of our U-Net. A comparison between the U-Net
and iterative methods demonstrates that the proposed U-Net
method produces the reconstructed images with acceptable
quality. The PSNR is more than 23 dB.
The numerical reconstructions are presented in Fig. 8.We test

100 random images from the testing dataset, and Fig. 8(a) indi-
cates that both the GS and SGD iterative algorithms can achieve
a high quality (> 25 dB) after sufficient iterations are performed
(say 30 iterations). When the number of iterations is small and
the time consumed is low, the PSNR of the GS method is higher
than that of the SGDmethod. But, after the number of iterations
exceeds 35, the situation is reversed, i.e., the PSNR of SGD is bet-
ter than that of GS.We find that, for running the same iterations,
the SGD method consumed half the time of the GS method, so
the SGD method takes less than half the time compared to the
traditional GS method to achieve high-quality reconstruction
results (PSNR > 30 dB). The SGD method is a better iterative
method compared to the GS method when high-quality
reconstruction of images is required. The results are achieved
on the assumption that the wave propagation model used for
optimizing the SLM phase pattern is the same for simulating
the final image. The U-Net only takes an average of 0.05 s to gen-
erate 1920 × 1080 holograms and achieve an average of 25 dB
PSNR of the reconstruction image quality.

Fig. 6. Performance evaluation of the GS algorithm and the SGD
algorithm.

Fig. 7. Performance evaluation of our U-Net and the iterative methods. The
PSNR and MSE values indicate the reconstruction image quality of the
algorithm.

Fig. 5. Illustration of our wave propagation model. A target image is first con-
verted to an amplitude value, and then is passed to a phase-encoder network
(i.e., the U-Net). At the SLM plane, we display the CGH and propagate the light
field to the target plane. During the training phase, the loss between the pro-
jection image and the target amplitude can be calculated and is then propa-
gated back to train the phase-encoder network.
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4. Experiments

We also build an actual phase-only holographic display proto-
type to validate our simulation results. All of the experiments are
performed under the same condition. The schematic of the
experimental setup is shown in Fig. 9. We load the CGH on a
HOLOEYE PLUTO-2-VIS-014 reflective SLM. The pixel size
of the SLM is 8 μm, and the pixel number is 1920 × 1080.
The green laser with the wavelength of 532 nm is used. The pat-
terns are projected on the wall and are captured by a camera. The
parameters used in the experiments are consistent with those
used in the simulations above.
Figure 10 demonstrates the effectiveness of our proposed

method. The simulated image and the experimental result of
our U-Net are shown in Fig. 10(a). The size of the projection
image on the wall is 15.36 cm × 8.64 cm, which is consistent
with the simulated result. We then compare the reconstruction
quality of GS holography, SGD method, and our U-Net in
Fig. 10(b). All of them are based on the DSFD algorithm.

Compared with the reconstruction results of the iterative
method, the U-Net method can achieve qualified digital holog-
raphy reconstruction.
The results show that our DSFD-Net model has great poten-

tial for designing a lensless holographic projection system with
large FOV. Besides, current methods using machine learning for
calculating the diffraction process are basically for simple dif-
fraction algorithms, such as the S-FFT algorithm and the angular
spectrum diffraction algorithm. For different tasks, the corre-
sponding machine learning methods and systems have their
own adaptations. Whether machine learning algorithms can
be applied to more complex algorithms such as the DSFD algo-
rithm is still unknown. In this paper, we use machine learning
for DSFD algorithms with calculation of multiple diffraction
processes and varying sampling frequencies to demonstrate that
machine learning can be applied to different types of diffraction
algorithms and that the corresponding CGHs can be calculated
in real time. However, the proposed method still has some
unsolved issues. For example, training a digital hologram of a

Fig. 8. Comparison of average calculating speed and image quality achieved
by several CGH techniques. (a) Images are reconstructed with similar quality
at the same number of iterations by GS and SGD algorithms. (b) The SGD algo-
rithm requires less time than the GS algorithm for high-quality reconstruction.
The U-Net takes less than 0.05 s, which is far less than that of iterative meth-
ods. The horizontal of Fig. 8(b) is in logarithmic scale.

Fig. 9. Schematic of the experimental setup (P1, P2, polarizers; C&E, collimator
and expander; L, lens; BS, beam splitter).

Fig. 10. (a) Simulated optical image and the experimental result based on
U-Net. (b) Comparison of reconstruction quality of different encoding
methods.
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high-resolution image using a convolutional neural network
requires a very large GPU memory size. At the current stage,
it is difficult for the proposed method to further increase the
image resolution with available GPUs. In the next work, we will
try to compress the size of the neural network and find other
network structures to adapt our method to higher resolution
images. In the future, we will continue to study the algorithm
of CGH, especially 3D digital holography based on machine
learning.

5. Discussion

In this paper, the machine learning techniques are introduced to
generate the hologram used in an image magnified lensless holo-
graphic projection system. Compared to the iterative method,
neural network can compress computation time to the several
milliseconds level. Meanwhile, the neural network can match
various projection systems to meet the corresponding require-
ment of the near-eye display devices. The proposed method is
applicable to augmented reality displays, virtual reality displays,
and, hopefully, other real-time 3D display systems in the future.
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