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Light bullets (LBs) are localized nonlinear waves propagating in high spatial dimensions. Finding stable LBs and realizing
their control are desirable due to the interesting physics and potential applications. Here, we show that nonlocal LBs gen-
erated in a cold Rydberg atomic gas via the balance among the dispersion, diffraction, and giant nonlocal Kerr nonlinearity
contributed by long-range Rydberg-Rydberg interaction can be actively manipulated by using a weak gradient magnetic
field. Nonlocal LBs are generated by a balance among dispersion, diffraction, and large nonlocal Kerr nonlinearities con-
tributed by long-range Rydberg-Rydberg interactions. Here, we find that active manipulation can be achieved by weak gra-
dient magnetic fields in cold Rydberg atomic gases. Especially, the LBs may undergo significant Stern–Gerlach deflections,
and their motion trajectories can be controlled by adjusting the magnetic-field gradient. The results reported here are
helpful not only for understanding unique properties of LBs in nonlocal optical media but also for finding ways for precision
measurements of magnetic fields.
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1. Introduction

In recent years, much attention has been paid to the investiga-
tion on electromagnetically induced transparency (EIT) in cold
Rydberg atomic gases[1–26]. This is rooted in the fact that atomic
Rydberg states have long coherent lifetimes and strong long-
range interaction (called Rydberg-Rydberg interaction) between
remote atoms. The Rydberg-Rydberg interaction makes the
atomic gases be nonlocal optical media, and they can be effec-
tively mapped to strong photon-photon interactions via EIT.
As a result, strong nonlinearities at very low light intensity
can be realized[5,6,14], which opens up a new avenue to study
nonlinear and quantum optics and realize novel photon devices,
such as single-photon switches[27–31], optical transistors[4,32],
photon memories[10,11], and single-photon sources[33].
Light bullets (LBs)[34] are solitary nonlinear waves localized in

m spatial dimensions and one time dimension [�m� 1�D;
m = 1,2,3]. In recent years, the study of LBs has attracted inten-
sive theoretical and experimental interests[35] because of their
rich nonlinear physics and technological applications[36,37].
However, the generation of stable high-dimensional LBs is a
topic not solved for a long time. It has been shown recently that
stable �3� 1�D nonlocal LBs can be realized in Rydberg atomic
gases; such LBs have extremely low generation power and ultra

slow propagation velocity[17]. Different from the non-interac-
tion system, the central element is the co-existence of giant non-
local and local optical Kerr nonlinearities. The former features a
fast (sub-microsecond) response[38], which is complemented by
the latter, whose response is relatively slow (in the order of
microseconds). In conjunction with tunable dispersion and dif-
fraction, this allows us to precisely control dynamics of LBs.
In this work, we propose a scheme to realize the active control

of the nonlocal LBs in a Rydberg atomic gas. We show that the
�3� 1�D LBs generated in such a system via EIT can be manip-
ulated by using a gradient magnetic field. In particular, the LBs
can undergo significant Stern–Gerlach deflections even when
the magnetic-field gradient is weak, and their motion trajecto-
ries can be adjusted through the changing of the magnetic-field
gradient. Our work contributes to the efforts for understanding
the unique properties and realizing the active controls of high-
dimensional LBs and also for finding new techniques for preci-
sion measurements of magnetic fields.

2. Model

The system under study is a cold three-level atomic gas working
with a Rydberg-EIT scheme, shown in Fig. 1(a). Here, the levels
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j1i, j2i, and j3i are ground, intermediate, and Rydberg states,
respectively; a weak, pulsed (with time duration τ0) probe laser
field (center angular frequency ωp, center wavenumber
kp = ωp=c, half-Rabi frequency Ωp) couples to the transition
between j1i and j2i; a strong, continuous-wave control laser
field (angular frequency ωc, wavenumber kc = ωc=c, half-Rabi
frequency Ωc) couples to the transition between j2i and j3i.
The total electric field of the system reads E = Ep � Ec, with
Eα = eαEα exp�i�kα · r − ωαt�� � h:c:. Here, with r = �x,y,z�, eα
and Eα are the unit polarization vector and field amplitude
for the α field (α = p, c), respectively. To suppress Doppler
effect, the probe and the control fields are assumed to
counter-propagate along the z direction. Figure 1(b) shows
the geometry of the system.
For realizing the active control on the LBs, a weak gradient

magnetic field is assumed to act on the atomic gas, with the form

B�x,y� = ẑB�r⊥� = ẑ�B1x� B2y�, (1)

where r⊥ = �x,y; 0�, ẑ = �0,0,1� is the unit vector in the z direc-
tion, B1 and B2 characterize the gradients of themagnetic field in
the x − y plane. Due to the presence of the magnetic field, each
level of the atoms is split into a series of Zeeman sub-levels with
energy ΔEZeeman

α = μBgαFm
α
FB, where μB, g

α
F , andm

α
F are the Bohr

magneton, gyromagnetic factor, andmagnetic quantumnumber
of level jαi, respectively. As a result, the one- and two-photon
detunings Δ2 and Δ3 are changed into Δ2�r⊥� = �ωp − ωc −
ω21� � μ21B�r⊥� and Δ3�r⊥� = �ωp − ω31� � μ31B�r⊥�, with

μαβ = μB�gαFmα
F − gβFm

β
F�=ℏ.

Under electric-dipole and rotating-wave approximations, the
Hamiltonian of the atomic gas including the Rydberg-Rydberg
interaction is given by Ĥ =N a∫ d3rĤ�r,t�, with Ĥ�r,t� the
Hamiltonian density, given by

Ĥ =
X3
α=1

ℏωαŜαα�r,t� − ℏ�ΩpŜ12�r,t� �ΩcŜ23�r,t� � h:c:�

�N a

Z
d3r 0Ŝ33�r 0,t�ℏV�r 0 − r�Ŝ33�r,t�: (2)

Here, N a is atomic density, Ωp ≡ �ep · p21�Ep=ℏ and Ωc ≡
�ec · p32�Ec=ℏ are, respectively, the half-Rabi frequencies of
the probe and control fields (with pαβ the electric-dipole matrix

element associated with the transition from jβi to jαi), Ŝαβ ≡
jβihαjei��kβ−kα�·r−�ωβ−ωα�Δβ−Δα�t� are atomic transition operators
(α,β = 1,2,3), and ℏV�r − r 0� ≡ −ℏC6=jr − r 0j6 is the van der
Waals (vdW) interaction potential (with C6 the dispersion coef-
ficient) between the Rydberg atoms located, respectively, at the
positions r and r 0[17].
The dynamics of the atoms is controlled by the Heisenberg

equation of motion for the atomic operators Ŝαβ, i.e., iℏ∂Ŝαβ=∂t=
�Ĥ,Ŝαβ�. Taking expectation values on both sides of this equation,
we obtain the optical Bloch equation involving one- and two-
body reduced density matrices (DMs), which can be cast into
the form

∂ρ

∂t
= −

i
ℏ
�Ĥ,ρ� − Γ�ρ�: (3)

Here, ρ�r,t� is the reduced DM in the single-particle
basis fj1i, 2i; 3ig, with the matrix elements defined by
ραβ�r,t� ≡ hŜαβ�r,t�i; Γ is a 3 × 3 relaxation matrix describing
the spontaneous emission and dephasing. Due to the existence
of the Rydberg-Rydberg interaction, two-body reduced DM
[i.e., ρtwobody with DM elements ραβ,μν�r 0,r,t�] is involved in this
equation, denoting the contribution from the Rydberg-Rydberg
interaction. The explicit expression of Eq. (3) is presented in
Supplementary Material[39].

Fig. 1. (a) Excitation scheme of the Rydberg EIT. |1〉, |2〉, and |3〉 are, respectively, the ground, intermediate, and Rydberg states;Ωp (Ωc) is the half-Rabi frequency
of the probe (control) laser field; Γ12 (∼MHz) and Γ23 (∼kHz) are, respectively, decay rates from |2〉 to |1〉 and |3〉 to |2〉; Δ2 = ωp − (ω2 − ω1) and Δ3 = ωp + ωc −
(ωc−ω1) are, respectively, the one- and two-photon detunings.ℏV(r− r

0
) is the vdW interaction between the two atoms in Rydberg states, respectively, located at

r and r
0
. (b) Geometry of the system. The probe and control fields counter-propagate in the Rydberg atomic gas. (c) Normalized χp,2(3)

(i.e., the coefficient of nonlocal Kerr nonlinearity) as a function of coordinate x, with the solid black (dashed red) line representing its real part Re(χp,2(3)) [imaginary
part Im(χp,2(3))] for coordinate y = 0 (see text for more details). Evolution of a (d1) nonlocal LB and (d2) vortex in the system.
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The dynamics of the probe field is described by the Maxwell
equation, which, under the slowly varying envelope approxima-
tion, reads

i

�
∂

∂z
� 1

c
∂

∂t

�
Ωp �

c
2ωp

∇2
⊥Ωp � κ12ρ21 = 0, (4)

where∇2
⊥ = ∂

2=∂x2 � ∂
2=∂y2, κ12 =N aωpjp12j2=�2ε0cℏ�, with c

as the light speed in vacuum. For a relatively weak probe field,
the population in atomic levels changes not much when the
probe field is applied to the system, and hence a perturbation
expansion beyond mean-field approximation for many-atom
correlations can be employed to solve the Bloch equation,
Eq. (3)[6,14,17]. The expression of the nonlinear optical suscep-
tibility of the exact probe field to the third order of the pertur-
bation expansion is given by

χp ≃ χ�1�p � χ�3�p;1jEpj2 �
Z

dr 0⊥χ
�3�
p,2�r⊥ − r 0⊥�jEp�r 0⊥�j2, (5)

where χ�1�p =N ajp12j2a�1�21 =�ε0ℏ�, χ�3�p;1 =N ajp12j4a�3�21,1=�ε0ℏ3�,
and χ�3�p,2 = ∫ dzN 2

ajp12j4a�3�21,2=�ε0ℏ3�[14,17]. In the above expres-

sion, the third term is the nonlocal Kerr nonlinear susceptibility,
contributed from the Rydberg-Rydberg interaction, while the
second term is the local Kerr nonlinear susceptibility, contrib-
uted from the non-zero two-photon detuning (i.e., Δ3 ≠ 0).
To be concrete in the following calculations, we choose stron-

tium atoms (88Sr), although our approach is valid for other
Rydberg atomic gases. The energy levels shown in Fig. 1(a)
are selected as j1i = j5s21S0i, j2i = j5s5p1P1i, j3i = j5sns1S0i,
with n the principal quantum number[39]. The spontaneous
emission rates of the atoms are given by Γ12 = 2π × 16MHz,
Γ23 = 2π × 16.7 kHz, so one has γ21 = Γ12=2, γ31 = Γ23=2, and
γ32 = �Γ12 � Γ23�=2. For this choice, the vdW interaction in
1S0 states is isotropically attractive (C6 > 0), which is important
to realize self-focusing nonlocal Kerr nonlinearity.
The result shown in Fig. 1(c) is χ�3�p,2 as a function of x for y = 0.

The real part [Re�χ�3�p,2�] and imaginary part [Im�χ�3�p,2�] are plot-
ted on the condition thatΔ2 ≫ Γ12 (i.e., the system works in the
dispersive nonlinearity regime) by the solid black line and the

dashed red line, respectively. We see that Im�χ�3�p,2� is much

smaller than Re�χ�3�p,2�, which means that the optical absorption

of the probe field is negligible, resulting from the EIT effect and

the condition of large one-photon detuning; moreover, Re�χ�3�p,2�
is an attractive potential well, and there is a saturation near
x = 0, which is due to the Rydberg blockade effect (with block-
ade radius ∼7 μm) that suppresses the excitation of atoms to the

Rydberg state and hence causes the nonlinear kernel χ�3�p,2 to sat-

urate to a finite value. By virtue of the strong Rydberg-Rydberg
interaction, the nonlocal optical nonlinearities can reach

∫ dr 0⊥χ
�3�
p,2�r 0⊥� ∼ 10−8 m2 V−2, which are many orders of magni-

tude larger than that of conventional EIT systems[6,14].

3. (3 + 1)D Nonlinear Envelope Equation

Our main aim is to implement an active control of LBs in the
system. To make the related physical mechanism transparent,
we first derive the equation describing the nonlinear evolution
of the probe-field envelope. For a modulated plane-wave of the
probe field, we assumeΩp ∼ F exp�i�Kz − ωt��[40]. The equation
for the envelope F in the presence of the magnetic field can be
derived by means of the multiple-scale perturbation method,
similar to that carried out in Ref. [41]. We obtain

i
∂u
∂s

= −
�
∂
2

∂ξ2
� ∂

2

∂η2

�
u − gd

∂
2u
∂σ2

− Vm�ξ,η�u

�
�
W1juj2�

Z
dr̃⊥W2�r̃⊥ − r̃ 0⊥�ju�r̃ 0⊥,s�j2

�
u� id0u: (6)

Here, s = z=�2Ldiff �; r̃⊥ = �ξ,η� = �x,y�=R0; σ ≡ �t − z=Vg�=τ0
[Vg ≡ �∂K=∂ω�−1 is group velocity, with K ≡ K�ω� the linear
dispersion relation]; u = �F=U0� exp�−α0z�, with α0 ≡ Im�K�
a decay constant; gd ≡ −LdiffK2=τ

2
0, W1 ≡ −bk2pR2

0U
2
0χ

�3�
p,1 , W2≡

−bk2pR4
0U

2
0χ

�3�
p,2 , and d0 ≡ −2Ldiff=LA are dimensionless coeffi-

cients of dispersion, local Kerr nonlinearity, nonlocal Kerr
nonlinearity, and absorption, respectively. In these coeffi-
cients, b = ℏ=jp12j2, K2 ≡ ∂

2 K=∂ω2 describes group-velocity
dispersion, Ldiff ≡ kpR2

0 and LA ≡ 1=α0 are, respectively, the typ-
ical diffraction and absorption lengths, and U0 and R0 are,
respectively, the typical half-Rabi frequency and transverse size
of the probe field. Since we are interested only in the dispersive
nonlinearity regime of the system, where the LA is much larger
than the other typical lengths, and hence d0 is very small, the
imaginary parts of the coefficients in Eq. (6) are negligible.
In Eq. (6), Vm ≡ −k2pR2

0χ
�1�
p is a dimensionless linear potential

contributed by the gradient magnetic field. It has the form
Vm�ξ,η� = V1ξ� V2η, with

V1 =
κ12R0Ldiff ��ω� Δ3�Δ3μ21 � jΩcj2μ31�

��ω� Δ2��ω� Δ3� − jΩcj2�2
B1, (7a)

V2 =
κ12R0Ldiff ��ω� Δ3�Δ3μ21 � jΩcj2μ31�

��ω� Δ2��ω� Δ3� − jΩcj2�2
B2: (7b)

We then consider the formation of LBs when the gradient
magnetic field is absent (i.e., Vm = 0). In this case, stable �3�
1�D LBs and vortices can form, with the result by a numerical
simulation shown in Fig. 1(d). From the figure, we see that
the �3� 1�D LB (upper part) and vortex (lower part) relax to
self-cleaned forms quite close to the unperturbed ones[42], and
their shapes undergo no apparent change during propagation.
The physical parameters used in the simulation are chosen as
Δ2 = −15Γ12,Δ3 = −0.02Γ12, R0 = 10 μm, τ0 = 9 × 10−7 s,N a=
3 × 1010 cm−3, U0 = 0.3Γ12, and C6 ≃ 2π × 81.6MHz μm6 (for
the principal quantum number n = 60). With these parameters,
we obtain Ldiff = 1.36mm, LA = 907mm,Rb = 6 μm, gd = 0.134,
and d0 = −0.03. Such an LB can form in a very short distance
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and generate extremely low light power (∼1 nW), which is due
to the giant Kerr nonlinearity (contributed by the Rydberg-
Rydberg interaction) and the ultraslow propagation velocity
of the probe pulse (∼2.3 × 10−6c, contributed from the EIT
effect).

4. Manipulation of LBs

We now turn to investigate what will happen for a nonlocal
LB when an external gradient magnetic field is present. As a
first step, we consider Eq. (6) in the absence of the Kerr nonlin-
earity (i.e., W1 =W2 = 0). Using the transformation u=
u 0 exp�i�V1ξ

0 � V2η
0 � V2

1s
2=3� V2

2s
2=3�s�, with ξ 0 = ξ −

V1s2=2 and η 0 = η − V2s2=2, Eq. (6) is converted into the form
i∂u 0=∂s = −�1=2��∂2=∂ξ 02 � ∂

2=∂η 02 � gd∂
2=∂τ2�u 0. It is easy to

obtain the expression of the central position of the probe pulse in
the ξ − η plane, which is given by �ξ,η� = �V1s2=2,V2s2=2�.
Returning to the original variables, the central position of the
pulse reads

�x,y� = κ12
��ω� Δ3�Δ3μ21 � jΩcj2μ31�
��ω� Δ2��ω� Δ3� − jΩcj2�2

R2
0

Ldiff
z2�B1,B2�: (8)

We see that, due to the presence of the magnetic field, the
motion of the linear wave is changed, and its trajectory in the x −
y plane has a deflection with a quadratic dependence on the
propagation coordinate z; moreover, the trajectory can be con-
trolled by tuning the gradient of the magnetic field, i.e., by
manipulating the parameters B1 and B2.
In the presence of the Kerr nonlinearities, it is hard to get an

exact expression for the motion trajectory of the probe pulse. In
this situation, however, one can obtain the trajectory deflection
by resorting to a numerical simulation for solving Eq. (6).
Figure 2(a) shows the result of the 3D motion trajectory of an
LB as a function of x=R0, y=R0, and z=�2Ldiff �, in the presence
of the gradient magnetic field with �B1,B2� = �3.2; 0�mGcm−1.
The corresponding trajectory in the x − z plane is illustrated
in Fig. 2(b). We see clearly that the LB experiences a deflection
due to the existence of the magnetic field. Shown in Fig. 2(c)
is the result of the 3D motion trajectory of the LB for an
increased magnetic-field gradient in the x direction by taking
�B1,B2� = �6.4; 0�mGcm−1. One sees that the trajectory of the
LB is changed significantly due to the increase of the magnetic
field.
In addition, richer motion trajectories of the LB can be

obtained by using different magnetic fields. To prove this, we
consider a time-varying gradient magnetic field of the form

B�x,t� = ẑB�x,t� = ẑB0 cos�ω0t�x, (9)

where ω0 characterizes the motion period of the magnetic field
in time. Figure 3(a) shows the motion trajectory of the LB under
the action of such a magnetic field. We see that the trajectory of
the LB follows the variation of the magnetic field. Illustrated in
Fig. 3(b) is the corresponding sinusoidal trajectory of the LB in

the x − z plane. Obviously, one can use various magnetic fields
to manipulate the motion of LBs; conversely, the trajectory
deflections of the LBsmay be exploited tomeasure externalmag-
netic fields.

5. Conclusion

We have shown that nonlocal LBs created in a cold Rydberg
atomic gas can be actively manipulated by using a weak gradient
magnetic field. In particular, the LBs can experience significant
Stern–Gerlach deflections when a weak external magnetic field
is applied, and their motion paths may be controlled through the
adjustment of the magnetic-field gradient. The results reported
here are useful not only for understanding novel properties of

Fig. 2. Stern–Gerlach deflections of nonlocal LBs. (a) 3D motion trajectory of
an LB as a function of x/R0, y/R0, and z/(2Ldiff) in the presence of the gradient
magnetic field (B1,B2) = (3.2, 0) mG cm

−1; (c) 3D motion trajectory of the LB for
(B1, B2) = (6.4, 0) mG cm

−1. (b) and (d) are trajectories of the LB in the x–z plane,
corresponding, respectively, to panels (a) and (c).

Fig. 3. Motion trajectory of the LB in the presence of a time-varying
gradient magnetic field. (a) Trajectory of the LB as a function of x/R0, y/
R0, and z/(2Ldiff) when the time-varying gradient magnetic field of Eq. (9)
is present. (b) The corresponding sinusoidal trajectory of the LB in the x–z
plane.
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the LBs in nonlocal optical media but also for finding new ways
for precision measurements of magnetic fields.
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