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Fluo-Fluo translation based on deep learning
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Fluorescence microscopy technology uses fluorescent dyes to provide highly specific visualization of cell components,
which plays an important role in understanding the subcellular structure. However, fluorescence microscopy has some
limitations such as the risk of non-specific cross labeling in multi-labeled fluorescent staining and limited number of fluo-
rescence labels due to spectral overlap. This paper proposes a deep learning-based fluorescence to fluorescence (Fluo-
Fluo) translation method, which uses a conditional generative adversarial network to predict a fluorescence image from
another fluorescence image and further realizes the multi-label fluorescent staining. The cell types used include human
motor neurons, human breast cancer cells, rat cortical neurons, and rat cardiomyocytes. The effectiveness of the method is
verified by successfully generating virtual fluorescence images highly similar to the true fluorescence images. This study
shows that a deep neural network can implement Fluo-Fluo translation and describe the localization relationship between
subcellular structures labeled with different fluorescent markers. The proposed Fluo-Fluo method can avoid non-specific
cross labeling in multi-label fluorescence staining and is free from spectral overlaps. In theory, an unlimited number of
fluorescence images can be predicted from a single fluorescence image to characterize cells.
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1. Introduction predicted vinculin from 4’',6-diamidino-2-phenylindole

) . . (DAPI)/Hoechst and F-actin. They demonstrated that the fea-
Fluorescence microscopy uses fluorescent dyes to provide highly sibility of a deep learning method in predicting the fluorescence
specific visualization of cell components, which plays an impor-

tant role in understanding the subcellular structure of cells!. tmages .depends on the corre.lauon betw.een mput qu]ages and
output images. Furthermore, in 2021, Shigene et al." ~ success-

However, challenges remain in fluorescence microscopy. . . . .
Firstly, the labeling of multiple fluorescent molecules on the fully predicted cytoske}etal protems. from actin, f.urther proving

. . : . that CNNs can predict the location of functionally related
antibody may have the risk of non-specific cross labeling and proteins

ffect the i tivity of the antibody'?). Secondly, wh
atiect the mmmune activity of the aitbocy ccondly, when The conditional generative adversarial network (cGAN)

there are many different fluorescence images in the sample, frective deeb learni el. which i 1 of
the number of distinguishable fluorescent colors in the visible 31 eHtective deep learning model, which is composed of a gen-
erator and a discriminator. Through competition between the

light range is usually limited to four due to the limitation of over-
lapping emission spectra of fluorescent dyes'. generator and the discriminator, cGAN can generate high-qual-

Recently, convolutional neural networks (CNNs) have been ity images! ', In this paper, we propose a new fluorescence to
proved to have unprecedented performance in microscopy fluorescence (Fluo-Fluo) translation method, which is achieved
image analysis tasks'*™). In 2018, Christiansen et al.'” used ~ by ¢GAN. In theory, an unlimited number of fluorescence
CNNs to generate virtual fluorescence images from the unla- ~ images can be predicted from one fluorescence image by
beled transmitted light images to identify the location and tex- ~ ¢GAN. Furthermore, cGAN can also realize virtual multi-label
ture of nuclei and membranes, the health of cells, the types of  fluorescence staining that can avoid non-specific cross labeling
cells, and the subcellular structures. In 2020, Nguyen et al'!  and spectral overlaps in multi-label fluorescence staining
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Fig. 1. System for Fluo-Fluo translation based on cGAN. (A) The training data-
setis composed of fluorescence images xand yin the same field of view. (B) A
deep neural network is composed of untrained parameters. (C) The deep neu-
ral network trained with data in (A). (D) Test image. (E) Based on the trained
deep learning model, the fluorescence image yis predicted from the fluores-
cence image X.

experiments. To our knowledge, the application of cGAN in
Fluo-Fluo translation is not reported previously.

Figure 1 illustrates the cGAN-based system for Fluo-Fluo
translation. Briefly, in this work, cGAN is employed to predict
the location of III-tubulin (TuJ1) protein, from Isletl protein to
predict the location and intensity of membrane from DAPI, to
predict whether the cell dies from Hoechst, to predict micro-
tubule-associated protein-2 (MAP2) and neurofilament-F
(NFH) from DAPI, and to further realize multi-label fluorescent
staining. Especially to improve the network output quality, a
new loss function combining the advantages of the L1 loss func-
tion and the multi-scale structural similarity (MS-SSIM) loss
function!'®! is constructed.

2. Principle

2.1. Conditional generative adversarial network

The purpose of image-to-image translation is to learn the map-
pings between different domains in order to complete the image
translation across domains''”). To predict a fluorescence image
from another fluorescence image, we adopt the cGAN-driven
architecture Pix2Pix!'*, The cGAN training process involves
two different networks, namely the generator network and the
discriminator network. The generator network attempts to gen-
erate an output image highly similar to the ground truth, and the
discriminator network tries to distinguish between the ground
truth and the image output by the generator. Finally, the trained
network can predict a fluorescence image from another fluores-
cence image. The cGAN framework for Fluo-Fluo translation
based on deep learning is demonstrated in Fig. 2.

2.2. Loss function

The selection of loss function is a key component of the deep
neural network design. The L1 loss function can keep the bright-
ness and color unchanged, but it assumes that the influence of
noise and the local characteristics of the image are independent.
The MS-SSIM loss function is an index that integrates human

Chinese Optics Letters

A.Training
Image x P e g G(x) Image y
|
IR © R - e <
! (Discriminator
\ ! /
N | i
\ >~ — {Output
N Image x ! 1
< Ll i
B.Testing
Imagex e G(x)

Fig. 2. cGAN framework for Fluo-Fluo translation based on deep learning.
(A] The generator network attempts to generate image y with respect to
image X and the discriminator network attempts to distinguish between
the generated image y and the true image y. There is a competitive relation-
ship between these two networks. Briefly, image x is used as the input of the
generator to obtain the generated image G(x), and then G(x) and x are com-
bined as the input of the discriminator. During training, two error functions
are calculated: (i) L1 and MS-SSIM loss functions are used to measure the
similarity between the generated image G(x) and the target image y: (i) the
cGAN error attempts to distinguish the generated image Glx) from the target
image y corresponding to the input image x. The combined loss functions are
optimized by the Adam algorithm. (B) Once trained, the generator can immedi-
ately predict the fluorescence image y from the fluorescence image x of the
test dataset.

subjective perception, taking into account subjective factors
such as brightness, contrast, structure, and resolution.
However, the MS-SSIM loss function can easily lead to bright-
ness changes and color deviations''®!. Therefore, in this work, L1
and MS-SSIM are introduced into the loss function.

The loss function of cGAN is defined as follows:

Lcan(GD) =E, . yllog D(x,y)]
+ ]ExNPdala(x) {log{l - D[x,G(x)]}}, (1)

where pg...(x%,y) is the joint probability distribution of the fluo-
rescence image x and the fluorescence image y, and E, .., (.
is the expectation of log-likelihood of (x,y)!"®]. G attempts to
minimize the target, thereby minimizing the difference between
the generated fluorescence image and the true fluorescence
image, while D attempts to maximize the target.

The L1 loss function can be added to ensure that the output
image is clear!"):

ELI (G) = Ex,y~pdm(x,y)["y - G(x)”l] (2)

In addition, the MS-SSIM loss function is also added, as
follows:
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Lysssm(G) = Ey oy, xptl = MS-SSIM[y,G(x)]}.  (3)
The final loss function of our network is formulated as

G* =arg mGin mDaX£cGAN (G.D) + 41 L11(G) + 1 Lyis-ssim(G)-
4)

3. Experiment and Analysis

3.1. Experimental dataset

A part of the experimental dataset comes from a public data-
set'”), The data part involves three different types of cells,
namely human motor neurons, human breast cancer cells,
and rat cortical neurons, and eight different fluorescence images,
in which Islet] protein is used as a motor neuron marker '),
TuJ1 is used as a neuron marker>”, DAPI/Hoechst is used to
label cell nuclei, CellMask is used to label the cell membrane,
propidium iodide (PI) is used to label dead cells”"), MAP2 is
used to label dendrites??!, and NFH is used to label axons®*!.
We randomly crop the original image into non-overlapping
256 x 256 images. The ratio of the training set to the test set
of each group is 4:1. The detailed information of the dataset
is summarized in Table 1.

In addition, the rat cardiomyocytes data from our own experi-
ment, in which DAPT is used to label cell nuclei and CellMask is
used to label cell membrane, have also been used to evaluate the
generalization capability of the proposed method in Fluo-Fluo
translation.

3.2. Training

Our deep neural network is implemented using Python version
3.8.3. cGAN is implemented using PyTorch framework version
1.6.0. Other Python libraries include torchvision, dominate,

Table 1. Detailed Information of Experimental Data.

Fluorescence  Marked Training Test

Groups Cell Type Label Location Set Set
Group 1 Human motor Islet1 Motor 1280 320
neurons neurons

Tu)t Neurons
Group 2 Human breast DAPI Nuclei 300 75
cancer cells CellMask ~ Membrane
Group 3 Rat cortical Hoechst Nuclei 5760 1440
fedrons PI Dead cells
Group 4 Human motor DAPI Nuclei 2400 600
neurons

MAP2 Dendrites
NFH Axons
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visdom, os, time, Python Imaging Library (PIL), and Numpy.
The network implementation is carried out on a desktop com-
puter with Intel®Xeon® Gold 6248R CPU at 3.00 GHz and
3.00 GHz (two processors), 256G RAM, and running
Windows 10 operating system. We train the network model
for 200 epochs by the Adam optimization algorithm, and the
batch size of each optimization traversal is set to four. The regu-
larization parameters 4, and 4, are both set to 100. In order to
make the error converge to a smaller value, we use the learning
rate attenuation strategy. The initial learning rate is set to 0.0002.
For the first 100 epochs, the same learning rate is maintained,
and, for the next 100 epochs, the learning rate decays linearly
to zero.

In this work, the average training time of each group is 6.8 h,
and the average test time of each image is 0.5 s.

3.3. Evaluation criteria

In order to evaluate the performance of the network, we calcu-
late the structural similarity (SSIM)?*], the peak signal-to-noise
ratio (PSNR), and the mean absolute error (MAE) between the
true and the network generated images.

In this work, SSIM is calculated as

(Zﬂxﬂy + Cl)(Zny + CZ)
Uz + 15 + )0z + 05 +2)°

SSIM(x,y) = (5)

where y, is the average of x, u, is the average of y, o2 is the vari-
ance of x, oy is the variance of y, and o,, is the covariance of x
and y. ¢; = (k,L)?, ¢, = (k,L)?, k; =0.01, and k, = 0.03.

PSNR is defined as follows:

1 N
— 2
MSE =5 2 (= )" (6)
@ - 1)?
P =101 — .

SNR =10 ogm[ ISE (7)

MAE is calculated as follows:

1 N
MAE=N;|xi—y,-l- 8)

L. Experimental Results and Analysis

4.1, Predict Fluo-Fluo translation image

Figure 3 shows the prediction results of Groups 1-3 obtained by
the proposed method. The input image, the true image, the net-
work generated image, the absolute error map, and the scatter
plot are shown, respectively. Here, the absolute error represents
the difference of each pixel value between the true and the gen-
erated fluorescence images. With the higher values of absolute
errors, the color of the absolute error map becomes closer to
red. On the contrary, the color of the absolute error map
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A Islet](input) Absolute error Scatter plot

B DAPI(input) Scatter plot
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Fig. 3. Prediction results obtained by the proposed method. (A Predict Tu)1
protein from Islet! protein based on deep learning. (B) Predict CellMask from
DAPI based on deep learning. (C) Predict Pl from Hoechst based on deep
learning. From left to right, the input image, the true image (ground truth),
the network generated image, the absolute error map, and the scatter plot
are displayed in turn.

becomes closer to blue!'?!. The scatter plot is used to describe the
correlation between the true and the generated fluorescence
images!®”. Here, the intensity of a given pixel in the true image
is used as the x coordinate of the scatter plot, and the intensity of
the corresponding pixel in the generated image is used as the y
coordinate.

4.1.1. Predict TuJ1 protein from Islet1 protein

The cell type is human motor neurons. Isletl protein can be used
as a motor neuron marker. TuJ1 is a tubulin involved in neuro-
nal cell type-specific differentiation and can be used as a neuro-
nal marker. The experimental results show that the absolute
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error maps [Fig. 3(a)] are mostly blue, indicating that the differ-
ence in pixel values between the true fluorescence image (true
TuJ1) and the virtual fluorescence image (generated TuJ1) is
very small. In addition, the distributions of the scatter plot
[Fig. 3(a)] are generally in the shape of a straight bar, showing
linear and diagonal distribution. That means there is a strong
linear relationship between the true and the generated fluores-
cence images. These results indicate that cGAN can accurately
predict TuJ1 protein from Isletl protein.

41.2. Predict CellMask from DAPI

The cell type is human breast cancer cells. DAPI is a fluorescent
dye that can bind strongly to DNA and can be used to label
nuclei. CellMask dye can label membranes quickly and evenly.
Based on the experimental results from Fig. 3(b), we can observe
that the absolute error map is mostly blue, indicating that the
pixel value difference between the true fluorescence image (true
CellMask) and the virtual fluorescence image (generated
CellMask) is insignificant. The scatter distribution in the scatter
plot is basically linear and has a tendency to align towards the Y
axis. It indicates that there is a certain linear relationship
between the true and the generated fluorescence images. But,
the fluorescence intensity of the true fluorescence image is
higher than that of the generated fluorescence image.

41.3. Predict PI from Hoechst

The cell type is rat cortical neurons. PI can enter dead cells and
bind to DNA; therefore, dead cells can be identified by PI stain-
ing. As expected, the absolute error map shown in Fig. 3(c) is
almost all blue, indicating that the difference in pixel values
between true PI and the generated PI is small. Furthermore,
the scatter distribution in the scatter plot is linear and diagonal
distribution, indicating that there is a very strong linear relation-
ship between the true and the generated fluorescence images.

41.4. Predict MAP2 and NFH from DAPI

In addition to the above prediction from a fluorescence image to
another fluorescence image, we also train cGAN to predict
MAP2 and NFH from DAPI and realize the prediction of a vari-
ety of other fluorescence images from one fluorescence image.
Furthermore, we have achieved multi-label fluorescent staining
by merging different fluorescence images generated by the net-
work. Based on the multi-label results, we can better analyze the
co-expression and co-localization of different proteins in cell
samples!®®!. These prediction results are shown in Fig. 4.

The cell type is human motor neurons. MAP2 is a neuron-
specific cytoskeleton protein, which can be used as a neuron
dendritic marker. NFH is a neuron-specific intermediate fila-
ment protein, which can be used as a neuron axon marker.
The absolute error map in Fig. 4(a) is mostly blue, indicating that
the pixel value difference between the true MAP2 and the gen-
erated MAP2 is minor. The distribution in the scatter plot is gen-
erally in the shape of a straight bar, indicating that there is a
strong linear relationship between the true and the generated
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Fig. 4. Prediction results obtained by the proposed method. (A) Predict MAP2
from DAPI based on deep learning. (B) Predict NFH from DAPI based on deep
learning. (C) Multi-label visualization co-localization.

fluorescence images. These results exhibit that cGAN can accu-
rately predict MAP2 from DAPI. However, only part of the
absolute error map in Fig. 4(b) is blue, indicating that there is
a certain difference between the pixel values of the true fluores-
cence image (true NFH) and the virtual fluorescence image
(generated NFH). Furthermore, the distribution of the scatter
plot in Fig. 4(b) is generally fan-shaped. It means that the true
and the generated fluorescence images are moderately corre-
lated. These results demonstrate that cGAN can predict NFH
from DAPI, but the prediction capability is average. Finally,
Fig. 4(c) shows the merged images of various fluorescence
images to visualize co-localization. The fourth column of
Fig. 4(c) is the merged image of the input DAPI label and the

Vol. 20, No. 3 | March 2022

Table 2. SSIM, PSNR, and MAE Values Between the True and the Network
Generated Images.

SSIM PSNR (dB) MAE
Comparisons Mean Std Mean Std Mean Std
TUN (true) vs TUJT (generated) ~ 0.802 0.024 21845 0.821 5682 1468

CellMask (true) vs CellMask 0.849 0028 23732 0948 6.348 1232

(generated)
PI (true) vs PI (generated) 0.980 0.009 29456 3266 0.885 0.610

MAP2 (true) vs MAP2
(generated)

0.888 0.030 23172 1595 3.999 1821

NFH (true) vs NFH (generated) ~ 0729 0.065 18130 1536 4616 1638

generated MAP2 and NFH labels. Comparably, the fifth column
is the merged image of the input DAPI label and the true MAP2
and NFH labels. Compared to the above results, they are found
to be similar, indicating that cGAN can effectively reconstruct a
variety of fluorescence images from a single fluorescence image.

In addition to the visual comparison provided in Figs. 3 and 4,
we further quantitatively compare the difference between the
true and the network generated images in terms of SSIM,
PSNR, and MAE. For each group, 20 randomly selected images
are used to calculate the quantitative indicators. Table 2 summa-
rizes the obtained SSIM, PSNR, and MAE values. These results
further demonstrate that cGAN successfully generates virtual
fluorescence images similar to ground-truth fluorescence
images.

4.2. Evaluate the effect of the number of training sets on
the prediction results

Figure 5 demonstrates the dependence of the prediction results
on the number of training sets used. Figures 5(a) and 5(b) show
the prediction results from Group 1 and Group 3, respectively.
The outputs are obtained based on the network model trained
with different numbers of training images. Furthermore,
Figs. 5(c) and 5(d) quantify the differences in terms of the SSIM,
PSNR, and MAE indicators. The experimental results show that
with an increase in the number of training images, the prediction
capability increases gradually. But, when reaching a high train-
ing data number (e.g., 2000 images in Group 3), the prediction
capability seems not to be obviously improved [Fig. 5(d)]. In
addition, we can also observe that relatively few training data
can already produce meaningful results [Figs. 5(c) and 5(d)].
Similar phenomena have also been demonstrated in LaChance
and Cohen'?”.,

4.3. Evaluate the generalization capability in Fluo-Fluo
translation

Figure 6 demonstrates the prediction capability of the proposed
method by our own experimental data. The cell type of the
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Fig. 5. Effects of the number of training sets on the prediction performance
of the proposed method. (A) and (B) Prediction results obtained by using the
reduced training sets. (A) Predict TuJ1 from Islet!. B) Predict PI from Hoechst.
(C) and (D) Quantify the differences in terms of the SSIM, PSNR, and MAE
indicators, respectively.

DAPI(input)
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n

Fig. 6. Predict CellMask from DAPI based on our rat cardiomyocyte dataset.
The public dataset from Group 2 (predicting CellMask from DAPI based on
human breast cancer cells) is used for network training, and then the trained
model is used to predict our own experimental data.

dataset is rat cardiomyocytes. DAPI is used to label the cell
nuclei, and CellMask is used to label the cell membrane. To fur-
ther demonstrate the generalization performance, in this case,
we use the public dataset from Group 2 (predicting CellMask
from DAPI based on human breast cancer cells) for network
training, and then the trained model is used to predict our
own experimental data. Furthermore, to calculate the quantita-
tive indicators, 20 randomly selected test images are used. The
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obtained values of SSIM, PSNR, and MAE were 0.751 + 0.014,
22.702 + 0.885 dB, and 7.718 + 3.379, respectively. These exper-
imental results demonstrate that cGAN successfully generates
virtual fluorescence images similar to true fluorescence images,
even if it is applied to different datasets.

5. Conclusion

This work proposes a method based on deep learning to predict
a fluorescence image in the same field of view from another fluo-
rescence image. cCGAN is used to generate virtual fluorescence
images. To improve the quality of the generated image, we add
the L1 loss function and the MS-SSIM loss function to the origi-
nal loss function. In addition to intuitive visual comparison, we
also use three indicators (SSIM, PSNR, and MAE) to quantita-
tively evaluate the performance of the network. The experimen-
tal results show that ¢cGAN successfully generates virtual
fluorescence images similar to true fluorescence images. It
should be noted that we have also achieved multi-label fluores-
cent staining by merging fluorescent images of different labels.

In summary, this study shows that a deep neural network can
achieve Fluo-Fluo translation and describe the localization rela-
tionship between subcellular structures labeled with different
fluorescent markers. Our Fluo-Fluo translation method can
avoid non-specific cross labeling in multi-label fluorescence
staining and is free from spectral overlaps. Theoretically, an
unlimited number of fluorescence images can be predicted from
one fluorescence image for cell characterization.
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