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Kalman filtering (KF) has good potential in fast rotation of state of polarization (RSOP) tracking. Different measurement
equations cause the diverse RSOP tracking performances. We compare the conventional KF (CKF) and the modified KF
(MKF), which have different measurement equations. Semi-theoretical analysis indicates the lower conditional variances
of measurement residuals and process noise of MKF. Compared with CKF, the MKF has> 3 dB optical signal-to-noise ratio
(OSNR) improvement at the 10 MHz scrambling rate in simulation. For MKF, more significant tracking speed improvement
exists for lower OSNR. MKF can be smoothly combined with an adaptive algorithm, which outperforms adaptive CKF
throughout the simulations.

Keywords: optics communication; polarization de-multiplexing; coherent transmission; adaptive filtering.
DOI: 10.3788/COL202220.020603

1. Introduction

Polarization division multiplexing plays an important role to
double the spectral efficiency for high speed coherent optical
fiber transmissions. The polarization de-multiplexing algo-
rithms can be divided into blind equalization and data-aided
multi-input multi-output (MIMO) algorithms. The blind algo-
rithms are mainly based on the characteristic of constellation
points, such as constant modulus algorithm (CMA), multi-
modulus algorithm (MMA), and cascaded MMA (CMMA),
together with their variants[1–3]. These kinds of blind algorithms
are based on the constant modulus or certain radii, which ena-
bles de-multiplexing in the presence of laser phase noise, frame
asynchronism, and inter-symbol interference[4]. However, these
blind algorithms have low convergence speed, singularity prob-
lem, and step-length sensitivity[5] due to the intrinsic short-
coming of such modulus-based cost functions. Besides, the
independent component algorithm (ICA) is also effective for
blind source separation[6,7], which solves the singularity[8] but
has the inherent polarization alignment problem[9]. The singu-
larity problem can be solved by Stokes space estimation or as the
initialization of the elements in the Jones matrix for the CMA-
based blind equalizations. However, the fast rotation of state of
polarization (RSOP), whose speed may exceed several hundred

mega radians per second in some extreme cases[10], may disable
the conventional MIMO fiber system and bring enormous chal-
lenges to existing digital signal processing.
The Kalman filtering (KF) has been widely used in system

control, which has been introduced into optical communica-
tions in recent years. KF has both blind[11,12] and data-aided
two-stage equalization forms[13] for both coherent and direct
detection schemes[14,15]. Blind KF avoids the decision-error-
induced divergence during iteration, but is modulation format
dependent. The two-stage data-aided KF uses the training
sequence at the first stage and decision-directed tracking at
the second stage, enabling general de-multiplexing under all
kinds of modulation formats without singularity or channel log-
ical confusion at the first stage. However, the performance
deterioration of the second stage may occur in the presence
of decision error, especially for low SNR cases. In our previous
work, we have proposed modified KF (MKF) with higher speed
of convergence and stability by modifying the measurement
equation of the conventional KF (CKF)[14]. However, the
improvements from measurement equation modification have
not been analyzed, which will be beneficial for different kinds
of KF.
In this paper, we analyze the noise tolerance of CKF andMKF

in theory by introducing conditional variance of measurement
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residual and process noise. We find that the enhanced noise tol-
erance of MKF compared with CKF results from the decrease of
the mean square error in each iteration by numerical simula-
tions. Besides, the covariance reduction indicates the noise tol-
erance improvement of MKF, which results in better tracking
ability and covariance initialization flexibility. Furthermore,
we find the noise covariance matching method can be smoothly
combined with MKF to adaptively update the covariance matri-
ces of measurement noise and process noise. We call it adaptive
MKF corresponding to adaptive CKF. The simulation compari-
son between adaptive CKF and adaptive MKF is conducted in
virtual photonics instrument (VPI)-MATLAB co-simulation
on a single carrier quadrature amplitude modulation (QAM)-
16 coherent optical fiber transmission system. Compared with
adaptive CKF, adaptive MKF has > 3 dB optical SNR (OSNR)
improvement at the scrambling rate of 10 MHz, and around
73.5% scrambling rate improvement at the OSNR of 24 dB.
Particularly, the adaptive MKF retains the successful joint
tracking of the fast RSOP and laser phase noise in the lower
OSNR cases. For higher OSNR, either the MKF or adaptive
MKF outperforms CKF or adaptive CKF in initialization
flexibility.

2. Theoretical Comparisons between CKF and MKF

Before the comparison, we denote the channel model and var-
iables of the transmission system. The polarization diversity
multiplexing (PDM) coherent optical transmission is assumed
to be linear and the discrete-time form of the received signal
y�n� after dispersion compensation can be expressed as

y�n� = H−1
CDfHCD�Hx�n� � N �g, (1)

where x�n� is discrete-time form of the transmitted signal, N is
the additive white Gaussian noise (AWGN), and HCD�·� and
H−1

CD�·� denote the fiber dispersion and its digital-domain com-
pensation. The channel response matrix H representing laser
phase noise and RSOP can be expressed as

H =
�Hxx Hxy

Hyx Hyy

�

=
�
cos κ�n�ejξ�n� − sin κ�n�ejη�n�
sin κ�n�e−jη�n� cos κ�n�e−jξ�n�

�
ejϕ�n�, (2)

whereϕ�n� is theWiener laser phase noise, and the RSOP can be
characterized with a three-parameter model denoted by the
amplitude ratio angle κ and the phase angles η and ξ[16–18].
We canmerge the five-parameter estimation of laser phase noise
and Jones matrix in Eq. (2) into four-parameter estimation by
multiplying the laser phase noise into the matrix.
The model of CKF and MKF is defined as follows. During the

iteration process of KF, the convergence can be achieved bymin-
imizing the difference between the predicted signal and the
observed signal. It is assumed that ẑCKF and ẑMKF are signals pre-
dicted by CKF and MKF. In CKF, ẑCKF can be derived by

ẑCKF =
�
x̂x�n�
x̂y�n�

�
= Ĝ

�
yx�n�
yy�n�

�
= Ĝy, (3)

whereas in MKF, ẑMKF can be derived by

ẑMKF =
�
ŷx�n�
ŷy�n�

�
= H

�
xx�n�
xy�n�

�
= Hx, (4)

where the subscripts x and y in Eqs. (3) and (4) stand for the
signal on two orthogonal polarization states, i.e., x-Pol. and
y-Pol, and Ĥ and Ĝ are the estimated channel response matrix
and the estimated inverse channel response matrix, respectively.
Then, the measurement residual δCKF and δMKF for CKF and
MKF can be expressed as

δCKF = zCKF − ẑCKF =
�
xx�n�
xy�n�

�
− Ĝ

�
yx�n�
yy�n�

�
, (5)

δMKF = zMKF − ẑMKF =
�
yx�n�
yy�n�

�
− Ĥ

�
xx�n�
xy�n�

�
: (6)

The difference in measurement residual between CKF and
MKF is illustrated in Fig. 1. For CKF, the noisy terms Ĝ and
the predicted measurement y�n� are multiplied together to in-
fluence the measurement residual. While MKF differs from
CKF, only one noise-related factor contributes to the prediction
ẑMKF, and the two noisy terms y�n� and Ĥ additively act on the
measurement residual. We show the equalization model and
state estimation process in Fig. 2.
Apart from the measurement residual, the KF algorithm also

minimizes the process noise. G and H are defined as the state
matrix of CKF and MKF, respectively. The process noises ΔG

Fig. 1. Measurement residuals of CKF and MKF.

Fig. 2. Equalization model and state estimation process of MKF.
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and ΔH in each iteration for CKF and MKF can be expressed in
Eqs. (7) and (8):

Ĝ = G� ΔG =H−1 � ΔG, �7�

Ĥ =H � ΔH : �8�

To concentrate on the noise tolerance analysis of the two
schemes, we degenerate the theoretical analysis into single
polarization. Substituting Ĝ in Eq. (5) with Eq. (7), we derive
the measurement residual of CKF as

δCKF = x − x̂ = x − Ĝ�H · x� N�
= x − �H−1 � ΔG��H · x� N�
= −�G� ΔG�N − ΔGHx = −ĜN − ΔGHx: (9)

Similarly, we have the measurement residual δMKF,

δMKF = y − ŷ = y − Ĥx = �Hx� N� − Ĥx

= �Hx� N� − �H � ΔH�x = N − ΔHx: (10)

According to Eqs. (9) and (10), the process noise for CKF and
MKF versus the measurement residual can be expressed as

ΔG = −�δCKF �H−1 N�=y = −�δCKF �H−1 N�=�Hx� N�,
(11)

ΔH = �N − δMKF�=x: (12)

We introduce the conditional variance of measurement resid-
uals and process noises for CKF and MKF to evaluate the noise
tolerance and to explore their interaction during each prediction
and innovation iteration. We define the conditional variance of
δCKF when sequence x is transmitted as

D�δCKFjx� = EΔG
�D�ĜN � ΔGHx��: (13)

Similarly, we have

D�δMKFjx� = EΔH
�D�N − ΔHx��, (14)

D�ΔGjx� = EδCKFfD��δCKF �H−1 N�=�Hx� N��g, (15)

D�ΔH jx� = EδMKF
fD��N − δMKF�=x�g, (16)

where E�·� and D�·� are the expectation and the second central
moment. The conditional variances are derived from the prop-
erty of

D�AjC� = EB�D�AjB,C�� � DB�E�AjB,C��,

where the second term on the right hand is small enough and
can be assumed to be zero since the process noise and the mea-
surement residual of a converged equalizer in a certain iteration
can be regarded as a zero-mean random variable. Larger

conditional variance leads to worse noise tolerance particularly
at the hard decision stage, and hence the filter has higher prob-
ability suffering from the noise-dominated divergence.
To avoid the complicated analytical derivation in variance

calculation, numerical simulations are conducted to compare
the noise tolerance between CKF and MKF based on
Eqs. (13)–(16), where a 16-QAM sequence with 216 complex
symbols is transmitted through the AWGN channel. For sim-
plicity, we compare the process noises by setting the channel-
scaling factor, H = 1, which leads to G = H−1 = 1. Figures 3(a)
and 3(b) show the conditional variance curves of measurement
error and process noise varying with process noise andmeasure-
ment error at different SNRs. To fully compare the conditional
variance, we set the x axis in logarithmic scale, which covers the
cases with both slighter and stronger noise. We take specific val-
ues of two variables to illustrate the rationality of the abscissa of
Figs. 3(a) and 3(b). Since the I- or Q-component of the
transmitted QAM signal ranges from −3 to 3, δKF = 6 in
Fig. 3(a) indicates that the measurement residual is on the same
order of magnitude as the transmitted signal, which is large
enough for a convergent Kalman filter. In Fig. 3(b), ΔKF =
10�10 log10�ΔKF��=10 = 103=10 = 2 also provides the conditional vari-
ance under the situation with larger process noise. As shown in
Figs. 3(a) and 3(b), both the conditional variances of process
noise and measurement error for MKF are always smaller than
those of CKF. The gaps between MKFs and CKFs occur in prac-
tical SNRs and tend to be more obvious for lower SNR cases.
To compare the SNR robustness between MKF and CKF, we

further depict the ratio of D�δCKFjΔG,x� and D�δMKFjΔH ,x� ver-
sus SNRs at different process noise levels, as shown in Fig. 4. All
of the conditional variance ratios are larger than one, which indi-
cates that MKF always introduces a smaller measurement
residual, especially for channels with higher noise power.
Therefore, for the general SNR region, we always have

D�δMKFjΔH , x� ≤ D�δCKFjΔG, x�, (17)

D�ΔHjδMKF, x� ≤ D�ΔGjδCKF, x�, (18)

Fig. 3. (a) Variance of process noise versus the measurement error; (b) vari-
ance of measurement noise versus the process noise.
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which means that MKF has less equalization enhanced instabil-
ity than CKF. By averaging each case over ΔH�G� and δ�MKF�CKF
in Fig. 2, for the given SNRs, we have

D�ΔHjx� < D�ΔGjx�, (19)

D�δMKFjx� < D�δCKFjx�: (20)

Inequalities (19) and (20) also hold in all practical channel
noise powers, as shown in Fig. 3, which indicates MKF outper-
forms CKF in noise tolerance, especially for large noise. This also
explains the better noise tolerance for MKF compared with CKF
in our previous experiment[19].
For stability and real implementation, we introduce the noise

covariance matching method into MKF, since it has lower com-
plexity and is more practical to implement than other adaptive
algorithms[20,21]. The adaptive estimations of covariance matri-
ces of process and measurement noise Qk and Rk are expressed
in a compact form as Eqs. (21) and (22):

Rk = αRRk−1 � �1 − αR�
tr�δ̆MKF,kδ̆

H
MKF,k �MnPkMH

n �
tr�Rk−1�

Rk−1,

(21)

Qk = αQQk−1 � �1 − αQ�
tr�Kkδ̆MKF,kδ̆

H
MKF,kK

H
k �

tr�Qk−1�
Qk−1, (22)

where

Mn =
�
xx�n� xy�n� 0 0
0 0 xx�n� xy�n�

�
, (23)

sk = �Ĥxx�k�, Ĥxy�k�, Ĥyx�k�, Ĥyy�k��, (24)

and δ̆MKF,k = �yx,yy�T −MnsTk is the measurement residual after

the update of sk. “tr” represents the trace of the matrix. K and P
are the Kalman gain matrix and the error autocorrelation
matrix. αR and αQ are forgetting factors that are helpful to bal-
ance the tracking speed and estimation accuracy.
When the channel is memorial, the state vector can be

extended to multi-tap. When obtaining the multi-tap state

vector s, we can reshape the state vector to the channel response
matrix A and determine its pseudo-inverse matrix as G = A† =
�AHA�−1AH if the columns of A are linearly dependent. Besides,
the inter-symbol interference can also be mitigated by conven-
tional adaptive equalizers with the least mean squares (LMS) or
recursive least squares (RLS) algorithms.

3. Simulation Comparisons of the Tracking Abilities

In this section, we conduct numerical simulations to testify the
proposed modified adaptive Kalman filter for joint polarization
and phase noise tracking. The simulation system is a conven-
tional polarization-multiplexed coherent 16-QAM optical
transmission system established in VPI 9.1. System parameters
are shown in Table 1. The block of RSOP is set based on Eq. (2),
where the angle κ = 2πf t varies in a sinusoidal form with the
scrambling frequency f . At the receiver, frequency-domain
group velocity dispersion compensation, fourth power FFT-
based frequency offset compensation, and match filter are
applied before the Kalman filter. The adaptive KF is adopted
for polarization de-multiplexing and phase recovery. Both
CKF and MKF adopt the covariance matching adaptive algo-
rithm with the initial covariance of 0.5.

3.1. Noise tolerance

We first compare the tracking performance between adaptive
CKF and adaptive MKF at different OSNRs, as shown in
Fig. 5, where we also compare the performance of the extended
CKF (ECKF) and pilot-aided averaging window method
(AWM) as a reference, where the ECKF still regards the mea-
surement variable as the transmitted symbols but estimates
the Jones matrix and laser phase noise ϕ�n� separately. The

Table 1. Simulation Parameter Setup.

Parameter Value

Baud rate 28 GBaud

Pulse shaping RRC

Training length 100

Signal linewidth 100 kHz

PMD coefficient 0.1 ps=km1=2

Dispersion 16 ps/(nm·km)

Sampling rate 112 GSa/s

Rolling factor 0.1

Freq. offset 100 MHz

Fiber length 400 km

Linewidth (LO) 100 kHz

Fig. 4. Variance rate of measurement errors versus SNR.
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AWM inserts three pilot symbols between every 17 symbols and
smooths the estimation noise by time averaging. The pilot over-
head of AWM is 15%, while for KF the number of training sym-
bols is 100. The overhead of KF is much less than AWM. The
scrambling rate of RSOP is 10MHz and 20MHz, corresponding
to Figs. 5(a) and 5(b), both of which have the linewidth of
100 kHz. The performances are evaluated at the 20% forward
error correction (FEC) limit, i.e., the bit error rate (BER)
of 2.5 × 10−2.
When the OSNR is below 18 dB, the divergence of KF mainly

results from the noise sensitivity of the second stage of Kalman
filter. The BER performance of MKF and CKF mainly differs
from each other within 18 to 24 dB since the noise tolerance
of KF differs in this range. We find MKF outperforms CKF
and ECKF for both cases and has > 3 dB OSNR improvement
over CKF at the 20% FEC limit. When the scrambling rate
increases to 20 MHz, 3.5 dB OSNR gain is observed compared
with CKF, while 1.87 dB OSNR gain is observed compared with
ECKF. AWM works better than KF at extremely low OSNRs,
which benefits from its very large overhead. Once KF converges,
the BERs rapidly drop below those of AWM.

3.2. Scrambling rate tolerance

We then compare the tracking ability of the adaptive CKF and
MKF with lower and larger noise powers. Figures 6(a) and 6(b)
show the BER performances for CKF and MKF versus scram-
bling rate at the OSNRs of 24 dB and 20 dB. The trends
can be divided into three segments, i.e., the optimum stage

(the scrambling rate is lower than 10 MHz), the transition stage
(the scrambling rate from 20 MHz to 35 MHz at 24 dB OSNR,
from 10 MHz to 20 MHz at 20 dB OSNR), and the divergence
stage (the higher scrambling rate).
Focusing on the transition stage, i.e., the extreme tracking

performance for CKF and MKF, we find that CKF and ECKF
diverge sharply at the OSNR of 24 dB, whereas the performance
ofMKF deteriorates gradually. From Fig. 6(a), we find that MKF
can converge under the scrambling rate up to 35 MHz, around
73.5% enhancement over CKF, i.e., 14.83MHz.When the OSNR
is 20 dB, CKF diverges, but MKF still has> 15MHz scrambling
rate tolerance, as shown in Fig. 6(b). This is because the
enhanced channel noise has higher probability to induce
cycle-slip or algorithm divergence.
At the optimum stage for the OSNR of 24 dB, the CKF and

MKF have similar performances. For the OSNR of 20 dB,
MKF can tolerate higher scrambling rate than ECKF at 20%
FEC limit, while CKF fails to track the fast RSOP in the mega-
hertz (MHz) level. MKF and ECKF outperform AWM in both
cases, even though MKF is a kind of linear KF. The results are
consistent with Fig. 5, which shows that MKF can work stably in
relatively lower OSNR.

3.3. Parameter initialization flexibility

Finally, we investigate the parameter initialization tolerance
with and without the Q/R adaptive algorithm. We show the
BERs versus the initial Q and R with hot maps in Fig. 7, where
theOSNR is 30 dB. In Fig. 7, the required R is proportional to but
larger than Q when the Q/R adaptive algorithm is not enabled.
Comparing the BER performance of MKF with CKF, we find
MKF outperforms CKF, as shown in the blue regions of the

Fig. 5. BER of the recovered signal versus OSNR. The scrambling rate is
(a) 10 MHz and (b) 20 MHz. The reference curves (gray dashed lines) are under
the back-to-back (B2B) case without RSOP.

Fig. 6. (a) Signal qualities versus scrambling rates at the OSNR of 24 dB;
(b) signal qualities versus scrambling rates at the OSNR of 20 dB.

Fig. 7. Initialization tolerance of Q/R parameter for linear CKF and MKF at the
OSNR of 30 dB and 10 MHz scrambling rate. (a) CKF without Q/R adaptive algo-
rithm; (b) CKF with Q/R adaptive algorithm; (c) MKF without Q/R adaptive
algorithm; (d) MKF with Q/R adaptive algorithm.
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hot maps in Figs. 7(a) and 7(c), which indicates a higher flexi-
bility of MKF in Q/R initialization that is mainly brought from
the improved noise tolerance of MKF.
When the adaptive algorithm is applied to the Kalman filters,

the convergence regions are only dependent on the initial R. We
find that theQ/R adaptive algorithm can also effectively improve
the flexibility of MKF, since both the convergence regions of
CKF and MKF are expanded significantly. This indicates that
the adaptive algorithm can improve the robustness of MKF at
higher OSNRs. While for lower OSNRs, adaptive MKF succeeds
in tracking the fast RSOP but adaptive CKF fails, as discussed in
Section 3.2.
The simulation results in Section 3 are concluded in Table 2

for a clear comparison. Based on the discussion above, our find-
ings are as follows. (1)MKF has higher noise tolerance than CKF
especially with lower OSNRs. (2) Themodification improves the
tracking speed and initialization flexibility, which benefits from
the improved noise tolerance. (3) The noise covariance match-
ing approach is effective for improving the initialization flexibil-
ity of MKF.

4. Conclusions

Both theoretical analysis and simulation results have shown that
the MKF has higher robustness to noise-induced decision error
and covariance matrices initialization that are related to the
tracking ability in the presence of fast RSOP. Higher tracking
speed (up to 50% improvement from CKF), better OSNR toler-
ance (> 3 dB improvement from CKF), and superior initializa-
tion flexibility are observed from MKF. The MKF combined
with the covariance matching method outperforms the adaptive
CKF, especially in the case of lower OSNR.
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