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We demonstrate manipulating the interactions of a second-order soliton with a weak probe pulse under the condition of
group velocity match and group velocity mismatch (GVMM). During these interactions, the second-order soliton acting as an
effective periodic refractive-index barrier leads to the polychromatic scattering of the probe pulse, which is represented
as unequally spaced narrow-band sources with adjustable spectral width. In the case of GVMM, almost all the spectral
components of the narrow-band sources meet the nonlinear frequency conversion relationship by using the wavenumber-
matching relationship due to the robustness of the second-order soliton under moderate high-order-dispersion perturba-
tions, so this case is more conducive to the study of the soliton wells. In addition, different transmission states of a soliton
well are demonstrated under different probe pulse properties in the fiber-optical analog of the event horizon. When the
power of the probe pulse is strong enough, a dispersive wave can be generated from the collision of two fundamental
solitons split from the two second-order solitons. These interesting phenomena investigated in this work as a combination
of white- and black-hole horizons can be considered as promising candidates for frequency conversion and broadband
supercontinuum generation.
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1. Introduction

Solitons are localized nonlinear waves formed by a balance
between dispersion and nonlinear effects and have broad appli-
cations in many physical systems including nonlinear fiber-
optics[1], plasmas physics[2,3], fluid mechanics[4], and so on.
These pulses exhibit similar characteristics, such as periodicity,
particle-like property, as well as stability[1]. But they are sensitive
to high-order dispersion (HOD) and nonlinear perturbation,
which induce the split of higher-order solitons[5–10]. The soliton
fission dynamics has been previously studied under the pertur-
bations of self-steepening (SS), HOD, and stimulated Raman
scattering, where a series of fundamental solitons with different
group velocities as well as phase-matched dispersive waves
(DWs) are generated[11–13]. Therefore, high-order soliton fission
is a crucial mechanism responsible for producing ultrashort
frequency-shifted fundamental solitons and ultra-broadband
supercontinuum (SC).
As one of the vital physical mechanisms for ultra-broadband

SC generation, the interaction between fundamental solitons
and DWs in nonlinear waveguides has been thoroughly studied

in the past decade[6,13]. When a relatively weak probe wave
transmits along with an energetic soliton with a different group
velocity, the boundary of the soliton acts as a fiber-optical analog
of the event horizon, preventing the escape or entry of the
probe wave, which imitates the boundary of the black hole
and white hole, respectively[14]. The physical mechanism under-
lying this process is that the intensity-dependent refractive index
of the fiber (i.e., the Kerr effect) changes the group velocity of
the incident probe wave, preventing it from passing through
the soliton[14–16]. The change of group velocity is essentially a
nonlinear frequency conversion between the incident probe
wave and the newly generated DW (i.e., the idle wave), and
the probe wave occurs with a blue-shift and red-shift at a
white-hole and a black-hole horizon, respectively[14,17–19].
This mechanism can effectively generate ultra-broadband and
coherent SC with neither soliton fission nor modulation insta-
bility[20]. The frequency conversion between the probe wave and
the idle wave turns out to be reversible for both bright and dark
solitons in the regime of an optical event horizon[21]. A weak
DW trapped by a solitonic well consisting of a pair of temporally
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separated solitons has been studied numerically and experimen-
tally[22–24]. A probe wave with an appropriate intensity can
change the trajectory of solitons and cause soliton collision or
fusion[25]. However, most of the studies about the interactions
between the probe wave and the soliton in the regime of an opti-
cal event horizon focus on the bright-fundamental solitons as
well as dark solitons and only a few studies on high-order sol-
itons[20–34]. Compared with dark solitons and bright-fundamen-
tal solitons, the collision dynamics between high-order solitons
and probe waves can produce more interactions and richer spec-
tral components. Especially, the polychromatic resonant radia-
tion at the optical event horizon is unique to the interaction
between the second-order soliton and the probe wave, because
the second-order soliton has excellent robustness under the per-
turbation of moderate third-order dispersion (TOD)[10]. When
the higher-order soliton (N > 2,N is the soliton order) interacts
with the probe wave, it will be split under the perturbation of
HOD. Therefore, the formation of the optical event horizon is
essentially the interaction between the probe wave and the split
fundamental-order soliton, so polychromatic resonant radiation
will not be generated. In addition, we quantitatively discuss the
interaction between the second-order soliton and the probe
wave under the conditions of group velocity match (GVM)
and group velocity mismatch (GVMM). By comparison, we find
that the GVMM condition is more conducive to the study of the
sustained and stable collision dynamics between the second-
order soliton well and the probe wave. The underlying mecha-
nism of these interactions in our study at the optical event hori-
zon is critical for the manipulation of the soliton-probe wave
dynamics.
The paper is organized as follows. In Section 2, the theoretical

propagation model of the second-order soliton and the probe
wave in a dispersive nonlinear optical fiber is introduced. In
Section 3, the interactions between the probe wave and the
second-order soliton/second-order soliton well are demon-
strated and analyzed in detail. Finally, in Section 4, we summa-
rize our numerical results.

2. Theoretical Model

The interaction between a soliton and a probe wave at the fiber-
optical analog of an event horizon in a dispersive nonlinear opti-
cal fiber can be governed by the following generalized nonlinear
Schrödinger equation (GNLSE)[26]:

i∂zA� 1
2
∂
2
t A − iε∂3t A� jAj2 A = 0: (1)

Here, z = Z=Z0 is the distance normalized to the dispersion
length, and t = �T − Z=υg�=T0 is the time normalized to the
input pulse width T0. The dispersion length is related to
second-order dispersion and pulse width as Z0 = T2

0=jβ2j, and
υg is the group velocity of the soliton. Here, we consider a
standard single-mode fiber with a zero-dispersion wavelength
(ZDW) at 1311 nm. The dispersion coefficients at the pump

wavelength (1436 nm) are as follows: β2 = −14.8129 ps2=km,
β3 = 11.83 ps3=km. The coefficient ε = β3=�6jβ2jT0� denotes
the relative intensity of TOD; here, T0 = 100 fs, so ε = 0.0133.
The non-instantaneous Raman nonlinear effect is not included
here because it has a negligible impact on the dynamics at an
optical event horizon[20,35]. In addition, the effects of SS and
HOD (with n > 3) are also not included because they do not
play an important role[34–36].
The input consists of a second-order soliton and a probe pulse

with a temporal delay and a frequency offset, which are launched
in the anomalous and normal dispersion region of the fiber,
respectively. The envelope of the input field is expressed as
follows:

A0�t� = ASol�t� � AP�t�, (2)

where

ASol�t� = 2
�����
P0

p
sech�t�, (3)

and

AP�t� = AP sech��t − t1�=T1� exp�−iδP�t − t1��: (4)

Here, P0 relates to the intensity of the soliton; AP and T1

are the amplitude and width of the probe pulse. t1 and δP =
�ωP − ω0�T0 are the time delay and normalized angular fre-
quency offset between the soliton and the probe pulse. δ =
ΔωT0 = �ω − ω0�T0 is the normalized angular frequency offset
to the second-order soliton.

3. Result and Discussion

3.1. Interaction of a second-order soliton with a probe
pulse under the condition of GVM

We quantitatively discuss the interaction dynamics in the case of
GVM and find that the optical event horizon is formed in this
case. The wavenumber

D�δ� = −δ2=2� εδ3 (5)

and the group delay curves of this fiber are shown in Fig. 1(a).
The GVM point in Fig. 1(a1) marked by the red dot represents a
frequency offset value where the group velocities of the probe
pulse and the second-order soliton are equal. The dynamics
of the probe pulse is reversed on two sides of the GVM point:
the GVM point is the transition point between a white-hole
and a black-hole horizon. In the simulation shown in Figs. 1(b)
and 1(c), the probe pulse is launched at the GVM point. Note
that two pulses will never meet if their group velocities are
too close to each other[35]. In our case here, although the input
probe pulse is launched at the GVM point, the input ultrashort
pulse has a broadband spectrum, containingmany spectral com-
ponents with different group velocities, which promotes the for-
mation of the optical event horizon. As shown in Fig. 1(b), there
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is no interaction between the second-order soliton and the probe
pulse initially, until they overlap at z = 3. After this, the second-
order soliton acts like a periodic refractive barrier, which pre-
vents the probe pulse from passing through. Subsequently, the
probe pulse is almost reflected completely from its original tra-
jectory, while the second-order soliton still keeps its original
state but with a slightly slower group velocity due to the collision
with the probe pulse.When the two pulses are temporally locked
due to their mutual interaction, a trapping DW indicated by the
white arrow in Figs. 1(d2) and 1(d3) is generated by four-wave
mixing (FWM) between the two pulses. Once the trapping DW
overlaps with the probe pulse, their interference leads to a pulse
with sinusoidally modulated intensity[35,37]; this process is
shown in Figs. 1(d1)–1(d4). With further propagation, the tem-
porally modulated pulse intensity leads to a correspondingly
modulated refractive index profile via the Kerr nonlinearity,
which produces a series of ultrashort pulses in the time domain,
as shown in Fig. 1(b). Such an effect is also represented by the
isolated narrow-band sources in the spectral domain in Fig. 1(c),
which results from the spectral interference between the probe
pulse and the trapping DW. Although the optical event horizon
is formed under the condition of GVM, no distinct nonlinear
frequency conversion is observed in Fig. 1(c). This is due to
the fact that all the spectral components of the probe pulse
are tightly enclosed around the GVMpoint, so the generated idle
pulse almost overlaps with the probe pulse in frequency. This
process imitates the phenomenon of a white-hole horizon, so
all the narrow-band sources moderately move toward the
high-frequency region.

3.2. Interaction of a second-order soliton with a probe
pulse under the condition of GVMM

We quantitatively discuss the interaction dynamics in the case
of GVMM, and some interesting phenomena have been discov-
ered. The group velocity of the probe pulse is slightly larger
than that of the second-order soliton, so the second-order

soliton precedes the probe pulse temporally, as shown in
Fig. 2(c2); the corresponding output temporal profile is shown
in Fig. 2(c1). Some new frequency components are generated
during the spectrum evolution in Fig. 2(a1). The rightmost fre-
quency component around δ = 40 composed of multiple peaks
[enlarged in Fig. 2(a3)] is the Cherenkov radiation from the sec-
ond-order soliton, because the central frequency of themultiple-
peak structure agrees with the prediction of the DW by both
phase-matching theory[26] and wavenumber curve in Fig. 1,
marked by the black dot in Fig. 2(a2). Besides, the multiple-peak
structure is generated before the interaction between the probe
wave and the second-order soliton. So, we can conclude that
the multiple-peak structure is DW emitted by the second-order
soliton. The separation between the frequency peaks of the
multiple-peak Cherenkov radiation is described by[10]

1
2
β2δ

2 � 1
6
β3δ

3 − τgδ =
1
2
jβ2j
T0

� 2π
Zs

N: (6)

Here, Zs is the oscillation period of the second-order soliton,
N is an integer number, and τg = υ−1g is the soliton group delay.
During this interaction, the second-order soliton has excellent
robustness under the perturbation of moderate TOD. So, the
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Fig. 1. (a) Wavenumber and corresponding group delay curve as a function
of normalized angular frequency offset. The probe pulse is launched at a
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Fig. 2. (a1) Spectral and (c2) temporal evolutions of the interaction between a
probe pulse and a second-order soliton under the condition of GVMM. The
corresponding wavenumber curve is shown in (a2). S and P represent the
launch positions of the second-order soliton and the probe pulse, respectively.
DW indicates the predicted position of the dispersive wave, G stands for the
GVM point, and I denotes the position of the idle wave. (a3), (b1), and (b2) are
zoomed-in plots of the spectrum in the green and red boxes in (a1). The output
spectrum of the oscillating radiation region when adjusting the (d1) temporal
width and (d2) time delay of the incident probe pulse based on (a1). (c1) The
output temporal profile. In (b2), (d1), and (d2), the vertical dashed lines indicate
the locations of the pairs of the probe and idle waves, which agree with Eq. (8)
quite well (as indicated by the horizontal solid lines). Here, P0 = 1, AP = 0.1,
δ = 22.62, T1 = 3.
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resonance frequencies for the radiation generated by cascaded
FWM between the probe pulse and the second-order soliton
can be derived via the perturbation theory used for fundamental
solitons[26,35]. This theory indicates that the probe pulse experi-
ences a nonlinear optical frequency conversion to an idler,
which satisfies the following resonance condition[26]:

D�ωP − ω0� = D�ωI − ω0�: (7)

As shown in Fig. 2(a1), the resonant radiation is polychro-
matic owing to the unequally spaced narrow-band sources gen-
erated by frequency modulation. This is in contrast to the case
of fundamental solitons, where the resonant radiation only has
one frequency peak. While there are five probe and idle pairs
shown in Fig. 2(b1), as can be seen from Fig. 2(b2), they all sat-
isfy the wavenumber-matching relationship. So, we can draw the
following conclusion:

D�ωPn
− ω0� = D�ωIn − ω0�: (8)

This phenomenon can be understood as follows. When the
probe pulse collides with the second-order soliton, it turns into
a series of narrow-band sources under the effect of cascaded
FWM; at the same time, the idle wave with corresponding
resonant peaks is generated via the wavenumber-matching
relationship. Adjusting the width of the probe pulse changes
the output spectrum of the oscillating radiation, as shown in
Fig. 2(d1). Interestingly, the spectral peaks of the output spec-
trum seem to be independent of the probe pulse width when
the probe pulse is wide enough, since both the phase-matching
condition and the regular evolution of second-order solitons
have not changed. The frequency peaks for T1 = 3, T1 = 4, as
well as T1 = 5 almost overlap. However, no obvious probe
and idle pairs are found for a width of the probe pulse narrower
than 3. This is because decreasing the width of the incident
probe pulse raises the time interval between the incident probe
pulse and the trapping DW. Here, the trapping DW is generated
by the samemechanism as in the case of GVM. The time interval
is inversely proportional to the modulation frequency. So, the
spectral width of the narrow-band sources slightly reduces, and
the pairs of probe and idle waves overlap in frequency and
modulate with each other. When we moderately regulate the
time delay of the probe wave, the frequency positions of the
probe and idle pairs do not change, as shown in Fig. 2(d2).
This is because the time intervals between the probe waves
and the trapping DWs are unchanged. In addition, we can see
from Figs. 2(d1) and 2(d2) that most of the energy of the probe
wave has been converted to an idle wave. The energy conversion
efficiency is slightly affected by the pulse width and time delay of
the probe wave. So, we can conclude from the above discussion
that when the temporal width of the probe pulse is large enough,
it is convenient to observe the nonlinear frequency conversion
between the polychromatic probe and idle waves under the
condition of GVMM.

3.3. Manipulation of a soliton well by a weak probe pulse

In this section, we focus on the dynamics between the soliton
well and the probe wave under the condition of GVMM. The
soliton well is composed of two identical second-order solitons
separated in time. An incident envelope consisting of a second-
order soliton well and a weak probe pulse at the corresponding
GVMM point can be mathematically expressed as follows:

A�t = 0� = AP sech�t=T1� exp�−iδPt�
� 2

�����
P0

p
sech�t − t1�

� 2
�����
P0

p
sech�t � t1�: (9)

The simulated collision dynamics of the probe pulse with the
pair of second-order solitons (i.e., a soliton well) is shown in
Fig. 3. In Figs. 3(a1) and 3(a2), the parameters are identical with
those used in Fig. 2(a1). As shown here, the probe pulse initially
bounces back and forth within the soliton well. The soliton well
plays the role of temporal analog of a planar dielectric multi-
mode waveguide, including limited support modes. After several
collisions, the probe pulse begins to escape from the soliton well.
This is because the temporal analog of themultimode waveguide
structure breaks down as a result of the split of second-order
solitons, which leads to the decline of the constraint ability of
the soliton well. Pairs of main solitons (high intensity) and fis-
sioned solitons (low intensity) are generated by the probe-pulse-
induced soliton fission, which obtains a red and blue frequency
shift. The collision between the two main solitons shown in
Fig. 3(a1) at z = 33.5 is induced by the effective interaction force
acting as the effective attraction owing to multiple scatterings
with the probe pulse. The collision-induced DW (CDW) is scat-
tered at a frequency determined by the standard phase-matching
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condition, where the peak power and central frequency are the
four solitons superposition field attained during the collision
and the mean frequency of the nonlinear superposition, respec-
tively[23]. No DW is scattered before or after the collision by
the individual main solitons because the frequency offset of the
two solitons from the ZDW is too large to satisfy the phase-
matching condition for DW generation. During the collision,
it precisely affects both the bandwidth and peak power that
allows the phase-matching condition for DW generation to be
satisfied.
When doubling the amplitude of the probe pulse (AP = 0.2),

not only the twomain solitons but also the two fissioned solitons
collide, as shown in Fig. 3(b1). However, no obvious CDW is
generated by the collision of the two fissioned solitons owing
to their low intensities. Increasing the amplitude of the probe
pulse from 0.1 to 0.2 advances the collision position of the
two main solitons from z = 33.5 to z = 18. This is because the
effective attraction is proportional to the intensity of the input
probe pulse, and, in turn, the greater the power of the input
probe pulse, the greater the absolute time delay of the two sol-
itons and the closer the two solitons, the shorter the distance
where solitons collision occurs. On the contrary, the probe pulse
can bounce within the soliton well for a longer distance, while
the two second-order solitons can maintain their original trajec-
tories by decreasing the amplitude of the probe pulse to 0.05
[Figs. 3(c1) and 3(c2)]. The trapping efficiency, defined as the
ratio of the energy confined in the soliton well to the energy
of the initial probe pulse, is higher than the previous two cases
shown in Figs. 3(a1) and 3(b1). In all cases, the time-domain
asymmetry of the soliton well in Figs. 3(a1), 3(b1), and 3(c1)
is caused by the collision of the probe wave with the soliton well
and the perturbation of TOD.
Another obvious phenomenon is that the sinusoidally modu-

lated power spectrum in the frequency domain is caused by a
pair of second-order solitons with a fixed phase relationship,
which can be seen in the enlarged figures in Figs. 3(a2), 3(b2),
and 3(c2). The phase between two second-order solitons can be
controlled by their time delay, and the oscillation period of the
sinusoidally modulated spectrum is inversely proportional to the
time delay. So, the interference fringes are extremely narrow
near z = 0. As the two main solitons and two fission solitons
are close to each other, the interference fringes gradually widen.
The spectral oscillation period is the largest at the collision point
of two main solitons. After the collision, the two main solitons
move farther away, leading to a decreasing period of the inter-
ference fringes.
To further investigate the collision dynamics between the

soliton well and a probe pulse in an optical event horizon, we
plot the dependence of the collision position (Zc) of the two
main solitons on the amplitude and width of the probe pulse
in Fig. 4. The width of the probe pulse is fixed at T1 = 3 in
Fig. 4(a). As shown here, increasing the amplitude of the probe
pulse decreases the value of Zc. The increasing amplitude of the
probe pulse enhances the effective attraction between the soli-
tons, which accelerates the splitting of the solitons and the col-
lision of the two main solitons. Figure 4(b) shows that the

collision distance (Zc) can be regulated by adjusting the width
of the probe pulse. Here, the amplitude of the probe pulse is fixed
to AP = 0.1. Increasing the width of the probe pulse narrows its
spectral width and reduces its broadening speed in time, which
helps to maintain the intensity of the probe pulse. This effec-
tively decreases the value of Zc. So, we can conclude from
Fig. 4 that regulating the amplitude and width of the probe pulse
is two effective ways to control the collision dynamics of a
soliton well in an optical event horizon.

4. Conclusion

In conclusion, we propose an approach to actively control the
interaction of the second-order soliton with an external probe
pulse under the condition of GVM and GVMM. In both cases,
an optical event horizon is formed, and the probe pulse becomes
a series of narrow-band sources with adjustable spectrum width,
which represent as ultrashort pulses with various widths in time.
Especially in the case of GVMM, all the spectral components of
narrow-band sources follow the frequency conversion relation-
ship according to the wavenumber-matching relationship, as
well as the multiple-peaks Cherenkov radiation from two soli-
tons at the predicted position with the regular interval. By com-
parison, the probe pulse under the case of GVMM is more
favorable to investigate the collision dynamics of soliton wells.
We further studied the case of a probe pulse with a soliton well
consisting of two second-order solitons. We find abundant col-
lision dynamics, where the collision location can be adjusted via
the width and intensity of the probe pulse. In addition, CDW is
observed by the collision of two energetic fundamental solitons
split from the second-order solitons, which enriches the spec-
trum components. Therefore, the collision dynamics of a soliton
well can be well controlled by the probe pulse. The dynamics in
the optical event horizon provides a fundamental explanation of
frequency conversion and broadband light generation in nonlin-
ear optical waveguides, which allow us to better understand the
fiber-optical analog of the event horizon and pave the way for
the on-chip application.
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