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Measuring the topological charge (TC) of optical vortex beams by the edge-diffraction pattern of a single plate is proposed
and demonstrated. The diffraction fringes can keep well discernible in a wide three-dimensional range in this method. The
redundant fringes of the diffracted fork-shaped pattern in the near-field can determine the TC value, and the orientation of
the fork tells the handedness of the vortex. The plate can be opaque or translucent, and the requirement of the translucent
plate for TC measurement is analyzed. Measurement of TCs up to ±40 is experimentally demonstrated by subtracting the
upper and lower fringe numbers with respect to the center of the light. The plate is easy to get, and this feasible mea-
surement can bring great convenience and efficiency for researchers.
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1. Introduction

In 1992, Allen et al. firstly, to the best of our knowledge, dem-
onstrated a helical phase structure of light with wavefront sin-
gularities carrying orbital angular momentum (OAM)[1]. Such
optical vortex (OV) beams characterized by the phase factor
exp�ilθ�, where l donates the OAM state or the topological
charge (TC), and θ is the azimuthal angle, have been widely
applied in various areas, including optical tweezers[2], optical
trapping[3], optical communication[4], and quantum informa-
tion technology[5]. Most of these applications require a specific
TC. As a consequence, the determination of TCs is of crucial
importance.
Many methods are proposed to measure the TC of vortex

beams, which can be basically divided into three techniques:
interferometry, intensity analysis of OV beams, and diffractom-
etry. Nevertheless, the first technique demands cumbersome
interferometric setups and finely aligned optical elements[6–11].
The intensity analysis of the OV beam with complex algo-
rithms[12] is not intuitive enough to determine the TC. The
present diffractometric methods usually transform OVs into
identifiable patterns by specialized components such as aper-
tures[13–15], lenses[16,17], and special gratings based on the mode

conversion from Laguerre–Gaussian (LG) beams to near
Hermite–Gaussian with phase-loaded spatial light modulators
(SLMs)[18–21].
Since the edge diffraction of OV beams was firstly investigated

and demonstrated in 1998[22], to the best of our knowledge,
increasing works have revealed its propagation properties due
to the helical phase of the OV beam[23–28]. Masajda et al. showed
that the OV beam is capable of self-reconstruction after edge
truncation, no matter whether the OV core is cut off or not.
Then, the ‘survived’ vortex core from the edge diffraction can
shift to the propagation axis[24,25]. This phenomenon results
from the propagation of the azimuthal component of the
Poynting vector of the OV beam[26], which is consistent with
the transverse energy circulation (TEC) theory[27] or the
Gouy phase variation in LG modes[28].
Furthermore, special attention should also be paid to the edge

(or angular[28,29], half-plane[24,30]) diffraction patterns, which
can be applied for OV diagnostics and detection. However,
the OV detection with angular diffraction[29] is in the far-field
diffraction, where the diffraction patterns are not as discernible
as the simulated ones when jlj becomes higher, and the Fourier
lens could result in additional aberration. In contrast, fork-
shaped fringes in the near-field edge diffraction have a higher
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tolerance for the lateral position of the plate and the longitudinal
position of the observation plane.
In this paper, only one simple plate is utilized to conveniently

measure the TC of OVs by its edge diffraction in the near-field
no matter whether the plate is opaque or not. Analogous to the
interferogram of an OV beam with a plane wave, the resultant
fork-shaped diffraction fringes can be used to determine the TC
value as well as the handedness of the OV beam. Tolerance for
rotated off-axis plate and diffraction distance is demonstrated
theoretically and experimentally. In addition, two methods to
enhance the diffraction pattern are proposed: computational dif-
fraction fringe enhancement by background deduction and the
use of a translucent plate. The parallelism, transparency, and
thickness required for the plate are also analyzed.

2. Theoretical Method

Assuming a paraxial monochromatic Gaussian-background
vortex beam propagating along axis z is normally incident at
a screen plate (depicted as Fig. 1), the complex amplitude of
the beam at z = 0 can be described by[31]

u0�x0, y0, 0� ≡ u0�x0,y0� = A�x0 � iσy0�jlj exp
�
−
x20 � y20
w2
0

�
,

(1)

wherew0 is the waist width of the Gaussian beam, σ = sgn�l�, l is
the TC, and A is a constant.
Considering that the screen plate located at the x0−y0 plane is

rectilinear hard-edged, and the size of the plate is much larger
than the beam waist (shown as Fig. 1), then the transmittance
function of the plate can read

T�x0, y0� =
�
1, x0 cos θs � y0 sin θs < rs
α exp�iΦ�, else

, (2)

where θs is the azimuthal angle of the plate edge (counted in the
anti-clockwise direction), and rs�≥ 0� is the distance from the

origin to the plate edge. Φ = nkd is the additional phase
associated with the thickness of the plate, where α, n, d are
the transparency, refractive index, and thickness of the plate,
respectively. Equation (2) can degenerate into an ordinary
opaque plate when α = 0 or a transparent homogeneous phase
step with α = 1. Generally, the front and rear surfaces are not
technically parallel. Therefore, the phase step can be viewed
as a prism with top angles of ϕ1 and ϕ2 (shown in Fig. 1),
and then the thickness d should be replaced by

d�xs� = d0 −
sin�ϕ1 � ϕ2�
sin�ϕ1� sin�ϕ2�

�xs − rs�, (3)

where d0 is the thickness of the substrate, and �xs, ys� is the coor-
dinate frame rotated with θs from �x0, y0� giving relations

xs = x0 cos θs − y0 sin θs, ys = x0 sin θs � y0 cos θs: �4�

Particularly, when the cross section of S is an isosceles trap-
ezoid, i.e., ϕ1 = ϕ2, the angle formed by the intersection of
the extended lines on both sides of the trapezoid gives
β = ϕ1 � ϕ2 − π. Then, Eq. (3) evolves to

d�xs� = d0 � 2 tan�β=2��xs − rs�: (5)

After the edge diffraction, the light field gives the complex
amplitude at the distance of z determined by the Fresnel diffrac-
tion integral in the Kirchhoff–Fresnel approximation

u�x, y, z� = e−ikz

iλz

Z
∞

−∞
dy0

Z
∞

−∞
u0�x0, y0�T�x0, y0�dx0

× exp

�
ik
2z

��x − x0�2 � �y − y0�2�
�
: (6)

Equation (6) can be changed to the form of Fourier
transformation

u�x, y, z� = e−ikz

iλz
exp

�
ik
2z

�x2 � y2�
�

× F

�
u0�xs, ys�T�xs, ys�e

ik
2z�x2s�y2s �

�

= E�x, y, z� · �u1�x, y, z� � αu2�x, y, z��, (7)

where

E�x, y, z� = Aeilθs
e−ikz

iλz
exp

�
ik

�
x2 � y2

2z

��
, (8)

u1�x, y, z� =
Z

∞

−∞
dys

Z
rs

−∞
dxs�xs � iσys�jlj

× exp

��
ik
2z

−
1
w2
0

�
�x2s � y2s �

�

× exp

�
−
ik
z
�xxs � yys�

�
, (9)

Fig. 1. Scheme of TC measurement of a vortex beam (l = 3 exampled) with a
screen plate S located at the x0−y0 plane (z = 0). The cross section of the plate
is shown at the bottom left. The diffraction patterns aligned along the z axis
illustrate the evolution of the OV edge diffraction.
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u2�x, y, z� =
Z

∞

−∞
dys

Z
∞

rs

dxs�xs � iσys�jljeinkd�xs�

× exp

��
ik
2z

−
1
w2
0

�
�x2s � y2s �

�

× exp

�
−
ik
z
�xxs � yys�

�
, (10)

and Ff·g denotes the spatial Fourier transform. The intensity dis-
tribution can be calculated with I = hu · u�i. The last line of
Eq. (7) shows that the diffraction can be considered as the super-
imposition of u1 and u2, and α represents the weight of u2. In this
consideration, u1 [see Eq. (9)] leads to the edge diffraction of an
opaque screen, and u2 offers the blocked OV diffraction of a rec-
tilinear phase step with the addition phase of nkd�xs�. Note that
the integrals of Eqs. (9) and (10) can be deduced into analytical
expressions that are pretty complicated[32], and numerical meth-
ods such as the fast Fourier transform (FFT) algorithm used in
this paper are more convenient to simulate and analyze the evo-
lution of the partially blocked OV beams.

3. Simulation Results of the Edge Diffraction

3.1. Opaque screen

The edge diffraction by an opaque screen (α = 0) has verified
that the creation, motion, and annihilation of phase singularities
in the diffraction field may appear by varying the edge deviation
and propagation distance[25,28,30].
Note that the radius of the OV beam at the maximum of

intensity is associated with its TC (l) and waist radius (w0 at
z = 0) of the fundamental mode, given by

rmax =
����������
jlj=2

p
w0: (11)

Here, we define the normalized deviation of the plate edge as
r̄ = rs=rmax and the normalized diffraction distance as z̄ = z=zR,
where zR = πw2

0=λ is the Rayleigh distance of the Gaussian beam.
Figure 2 calculated via Eq. (8) shows the simulated intensity

distributions of the edge diffraction of a blocked OV beam with
an opaque screen. The wavelength used in the simulation is
1064 nm, and the waist radius is 1 mm, giving zR = 5.91m.
Diffraction patterns of varied TCs are shown in Fig. 2(a). It is
verified that OV beams embedded with phase singularities
exhibit redundant fringes in contrast with the straight fringes
of the conventional Gaussian beam. For l > 0, the redundant
fringes appear at the top when the screen blocks partial light
on the right, i.e., the ‘fork’ orients to the upper and vice versa,
where the number of the redundant fringes is equivalent to
jlj. Note that the deviation of the edge may result in different
diffraction patterns. It is recommended from simulation results
[shown in Fig. 2(b)] that the rightmost fringe should be pre-
served in order to determine which fringes are redundant. On
the other hand, as the fifth column of Fig. 2(b) shows, the dif-
fraction fringes vanish when the screen edge locates more than

2rmax (r̄ ≥ 2) away from the center, which shows the weak influ-
ence of the edge. Therefore, to obtain distinct fringes, the edge of
the screen plate can deviate about 0.5rmax–1.5rmax from the
center of the OV beam.
It is shown in Fig. 2(c) that the pattern rotates as the edge

rotates due to the rotational symmetry of the OV beam.
Thus, the orientation of the fork-shaped pattern should be
defined relative to the screen edge. The evolution of the diffrac-
tion pattern along the z axis with varied diffraction distances z is
depicted in Fig. 2(d) with the normalized values of z̄ = 0.05, 0.1,
0.2, 0.4, and 1 for column 1–5, respectively. It turns out that the
number of the fringes decreases as the edge-diffracted beam
propagates further, and the fringes are finally deformed into a
symmetric structure, in which the symmetry axis is parallel to
the edge of the screen. This phenomenon is consistent with
the theoretical and experimental results in early works[25–27].
The overall requirement to discernibly and effectively measure
the TC and the handedness of the incident OV beam is that the
diffraction distance and the edge deviation are suggested to be
controlled at z = �0.05–0.4�zR and r = �0.5–2�rmax, respectively.

3.2. Translucent plate

As the screen plate becomes transparent (Fig. 3), the blocked
part goes through an additional phase Φ = nkd [see also
Eq. (2)]. Figure 3(b) shows the varied normalized thickness
d̄ = 8 · mod�nd, λ�=λ = 0–4, giving the additional phase Φ =
2πm� πd̄=4 = 2πm� �0–1�π, where m is an integer. A phase
step is formed between the perturbed and ‘survived’ segments
of the vortex beam and exhibits strong perturbation when the

Fig. 2. Simulated intensity profiles of OV beams edge-diffracted by an opaque
screen for (a) l =−2 to 2 in steps of 1, (b) r̄ = 0–2 in steps of 0.5, (c) θs = 0°–180°
in steps of 45°, and (d) z̄ = 0.05, 0.1, 0.2, 0.4, 1, respectively. The general case is
l = 3, r̄ = 1, θs = 0°, and z̄ = 0.1. Auxiliary red dashed lines indicate the dark
fringes. Hatched area shows the position of the plate, and the yellow arrow
points in the direction of the fork-shaped fringe. The intensity distribution is
normalized.
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phase step value approaches π or d̄ = 4 in Fig. 3(b)[32]. In this
case, the two segments of the vortex beam interfere to the maxi-
mum extent. At the same time, the fork-shaped fringes can be
more discernible. Therefore, the angle β between two surfaces
of the plate can be used to adjust the position of the perturbed
segment (see Fig. 1). As Fig. 3(c) shows, the fringes are further
distinct when the perturbed segment is at the center of the OV
beam, for instance, β = −3° at z̄ = 0.1 in Fig. 3(c).

4. Experiment Results and Discussions

The edge-diffraction-based TCmeasurement is also experimen-
tally demonstrated, and the setup is shown in Fig. 4(a). A neo-
dymium-doped yttrium aluminum garnet (Nd:YAG) laser is
used to produce the fundamental Gaussian mode at λ =
1064 nm with the waist radius w0 = 0.685mm and then
expanded into 1.5 mm by an expander, giving the Rayleigh
distance zR = 6.643m. The incident beam illuminates a pure
phase SLM loaded with fork-shaped blazed gratings [shown
in Fig. 4(b)], generating the desired OV beam at the first
diffraction order, and the other orders are filtered with an iris
diaphragm.
As shown in Fig. 4(a), in the case of α = 0, an opaque screen S

is employed to realize the hard edge diffraction. For α = 1, as a
consequence of the additional phaseΦ = 2πnd=λ varying with a
period of 2π, it is challenging to control the plate thickness in the
wavelength scale (the effective optical thickness d = d̄λ=4n,
d̄ = 0–4). Therefore, in this experiment, S is substituted by
another SLM (SLM2) loaded with a phase step [shown in
Fig. 4(c)] to mimic the transparent plate. On the other hand,
the phase pattern in SLM2 is supposed to be a whiteboard when
switching to the opaque screen diffraction. Finally, a CCD cam-
era set at the distance of z from S or SLM2 is used to capture the
diffraction profiles.

Figure 5 shows the experimental results of the truncated OV
beam of l = 3 with varied edge deviations of an opaque or a
transparent plate. Note that there are several ‘ripples’ in the gen-
erated beam, and the ring width is narrower than that desired in
Fig. 2. It may result from the properties of the Kummer beam[33],
which is usually generated by fork-shaped gratings and can be
degraded into a sum of standard LG beams with different
TCs and weights. Regardless, the experimental fringes in
Fig. 5(b), to a certain extent, show good agreement with the sim-
ulation ones in Fig. 2(b). Figures 5(a)–5(c) show that the fringes
can remain discernible at r̄ = 0.5–1.5 and z̄ = 0.05–0.2,
i.e., rs = 0.48–1.44mm and z = 33.22–132.86 cm in our experi-
ment, which is a wide range in three-dimensional space.

Fig. 5. Experimental intensity profiles of the OV beam (l = 3) at z̄ of (a) 0.05, (b),
(d) 0.1, and (c) 0.2 after edge diffraction by (a)–(c) an opaque or (d) a trans-
parent plate (d¯ = 4) at r̄ = 0–1.5 in steps of 0.5 for column 1–4, respectively.

Fig. 3. Simulated intensity profiles at l = 3, r̄ = 1, z̄ = 0.1 after edge diffraction
by a translucent plate with (a) the transparency α = 0–1 in steps of 0.25, (b) the
normalized thickness d¯ = 0–4 in steps of 1, and (c) the angle between two
surfaces of the plate β = −6° to 6° in steps of 3°. The general case is
α = 1, d¯ = 4, and β = 0°.

Fig. 4. (a) Experimental setup for generating the OV beam using SLM1 loaded
with (b) fork-shaped blazed gratings and measuring the TC using SLM2 loaded
with (c) a phase step. λ/2, half-wave plate; SLM, spatial light modulator; S, an
opaque screen in Fig. 1 in the case of α = 0; CCD, charge coupled device.
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In addition, the edge-diffraction patterns of the transparent
plate at z̄ = 0.1 with fixed d̄ = 4 and varied r̄ are shown in
Fig. 5(d). By contrast with those of the opaque screen in
Fig. 5(b), it can be seen that the actual interference of the two
segments of the vortex beam mentioned in Section 3.2 is not
obvious enough to improve the fringe clarity. It may still result
from the narrow ring width of the Kummer beam so that the
light from the blocked segment is not enough to interfere with
the other.
The experimental results for the measurement of higher TCs

of OV beams with l = ±40 (compared to jlj ≤ 3 illustrated
above) by an opaque screen are shown in Fig. 6. Since the central
dark area of OV light becomes more expansive with the increase
of TC, coupled with the ratchet-shaped initial light-field back-
ground [shown as Fig. 6(a)] caused by insufficient SLM resolu-
tion, fringes of the edge diffraction becomemore inconspicuous.
Therefore, for measurements of high TCs, the background pro-
file of the generated OV beam is removed from the fringes
of the edge-diffraction pattern to enhance the fringe contrast.

Figure 6(c) shows the corresponding enhanced fringes where
one can explicitly count the number of bright stripes at the upper
and lower cambered cross section of the intensity, and specific
values are shown in Fig. 6(d). As the plate is set to the right of the
OV beam, the TC value can be determined by subtracting the
number of lower fringes from the number of upper fringes. In
this case, the subtracted number’s sign coincides with the chiral-
ity of the vortex beam to be measured.
This method can remain steady for much higher TCmeasure-

ments but is limited by the resolution and field of view of the
CCD due to the increasing ring size and fringe density at the
end away from the plate edge. In this case, one can extend
the diffraction distance or reduce the edge deviation from the
center to increase the stripe spacing.

5. Conclusion

In conclusion, it is demonstrated theoretically and experimen-
tally that the edge of a plate can be used to measure the TC
of OV beams at a proper diffraction distance in the near-field.
The number of redundant fringes in the diffraction fork-shaped
pattern is equal to the TC value, and the orientation of the fork
relative to the plate edge indicates the handedness of the OV
beam. Simulated results of the opaque screen indicate that the
diffraction fringe contrast increases when the screen edge moves
closer to the center of the OV beam, and the fringe density
decreases as the diffraction distance increases, forming a
three-dimensional space to control the diffraction fringes. It
turns out that the edge diffraction of translucent plates can also
be used to form fork fringes based on the self-interference of the
OV beam with a rectilinear phase step. The transparency of the
plate affects the degree of interference, and the angle between
two surfaces of the plate determines the interference angle.
However, experimental results do not show obvious self-inter-
ference from the simulation due to the intensity differences
between the generated Kummer beam and the standard LG
beam. Since the generated OV beam with high TCs is accompa-
nied by the intrinsic large central dark area and low purity lim-
ited by the SLM resolution, the additional computational
diffraction fringe enhancement by removing the background
profile of the undiffracted beam from the diffraction pattern
is recommended and applied in our analysis for l = ±40.
This TC measurement method for OV beams takes good ad-

vantage of using only one simple and easily available screen
whether it is opaque or not. As the edge-diffraction pattern is
relevant to the phase of the incident light field, the method could
be used to diagnose the phase structure and energy flow for other
OV beams, such as composed vortices (a method to measure
fractional TC has been proposed in Ref. [34]) and vector
vortices[35,36].
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