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We report an electro-optically (EO) tunable microdisk laser fabricated on the erbium (Er3�)-doped lithium niobate on insu-
lator (LNOI) substrate. By applying a variable voltage on a pair of integrated chromium (Cr) microelectrodes fabricated near
the LNOI microdisk, electro-optic modulation with an effective resonance-frequency tuning rate of 2.6 GHz/100 V has been
achieved. This gives rise to a tuning range of 45 pm when the electric voltage is varied between −200 V and 200 V.
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1. Introduction

Thin film lithium niobate on insulator (LNOI) is emerging as a
promising platform for integrated photonic technologies because
of its small footprint, broadband ultra-low propagation loss, high
optical nonlinear coefficient, and large electro-optical effect[1–4].
Furthermore, rare-earth ions such as erbium (Er3�) and Yb3�

can be conveniently doped into the LNOI to realize an active
material platform[5,6]. The on-chipwaveguide amplifier andmicro-
laser based on the Er3�-doped LNOI have stimulated growing
interest in recent years, owing to the excellent optical properties of
the host crystal material together with the gain performance pro-
vided by the Er3� ions[7–14]. Recent advances in LNOI and its
micro- to nano-fabrication technologies permit the hybrid integra-
tion of LNOI circuits, where the on-chip microresonator modula-
tor or microlaser can be controlled by the passive circuitry. The
passive electro-optically (EO) tunable devices on LNOI such as
high-speed EO modulators have been broadly investigated[15–18],
while the active counterparts on LNOI are only studied very
recently, owing to the advent of the Er3�-doped LNOI in the last
year. Benefited from the large electro-optical coefficient of the

crystalline lithium niobate (LN), a high Q factor of the microdisk
resonator, and the gain performance provided by the rare-earth
ions, the EO tunable microdisk laser on Er3�-doped LNOI has
been realized with fascinating perspectives in emerging fields
including photonic chip, high-speed optical communication, pre-
cision metrology, and artificial intelligence.
In this Letter, we demonstrate an EO tunablemicrolaser based

on an Er3�-doped high-quality (∼2.13 × 106) LN microdisk
resonator fabricated by photolithography assisted chemo-
mechanical etching (PLACE). By applying voltage on the inte-
grated Cr thin film microelectrodes beside the Er3�-doped LN
microdisk resonator, the electro-optic modulation with an effec-
tive resonance-frequency tuning rate of 2.6 GHz/100 V was
achieved. Furthermore, the lasing wavelength of Er3�-doped
LN microdisk laser can be tuned by 45 pm when the voltage
is raised from −200V to 200 V.

2. Device Characterization

In our experiment, the on-chip LN microdisk resonator inte-
grated with Cr film electrodes was fabricated on a 600-nm-thick
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Z-cut Er3�-doped LNOI with a doping concentration of 1%
(molar fraction). The Er3�-doped LN thin film is bonded by
a 2-μm-thick SiO2 isolation layer on a 0.5-mm-thick undoped
LN substrate, which was fabricated by the smart-cut method[19].
A 600-nm-thick Cr film layer was deposited on the surface of the
Er3�-doped LNOI by the magnetron sputtering method. The
on-chip Er3�-doped LN microdisk resonator integrated with
Cr film electrodes was fabricated by PLACE, and more fabrica-
tion details can be found in Refs. [20–22]. Figure 1(a) presents
the schematic of the on-chip Er3�-doped LN microdisk resona-
tor integrated with Cr film electrodes. Figure 1(b) presents the
top view of the 200-μm-diameter Er3�-doped LN microdisk
from the optical microscope. The SiO2 pedestal underneath
the microdisk has a diameter of ∼150 μm. The anode is fabri-
cated into a circular pad of a comparable diameter to overlap
the area supported by the SiO2 pedestal, while the cathode
has a concave semicircle pattern with a diameter of ∼230 μm
surrounding the Er3�-doped LNmicrodisk. The Cr microelectr-
odes are clearly visible in the optical micrograph under reflected
illumination in Fig. 1(b), which appear bright white in contrast
to the green Er3�-doped LN microdisk. Figure 1(c) shows the
enlarged image of the rim of the Er3�-doped LN microdisk
by a 100×microscope objective; it displays interference patterns
under reflected illumination, indicating the varying thickness at
the edge of the Er3�-doped LN disk.
To characterize the electro-optical tunability of the Er3�-

doped LN microdisk laser, we used an experimental setup, as
shown in Fig. 2(a). Here, a continuous-wave C-band tunable
laser (CTL 1550, TOPTICA Photonics Inc.) was used for char-
acterizing the Q factor of the Er3�-doped microdisk. Alter-
natively, a diode laser (CM97-1000-76PM, Wuhan Freelink
Opto-electronics Co., Ltd.) operating at the wavelength
∼976 nm was chosen to pump the Er3�-doped LN microdisk.
The polarization states of the tunable laser and pump laser
are adjusted using the in-line fiber polarization controller

(FPC561, Thorlabs Inc.). The light into and out of the fabricated
Er3�-doped LN microdisk was coupled by a tapered fiber with
a waist of 1 μm. A photodetector (New Focus 1811-FC-AC,
Newport Inc.) was directed in the fiber path to measure the
transmission spectrum and Q factor of resonant modes of
the microdisk. The signal in the output of the fiber was cap-
tured by an optical spectrum analyzer (OSA, AQ6370D,
Yokogawa Inc.). A direct current (DC) stabilized power source
(CE1500002T, Rainworm Co., Ltd.) was used as the
voltage generator for Cr electrodes, which provided a variable
voltage ranging from 0 V to 500 V. Two probes (ST-20-0.5,
GGB Industries Inc.) were used to apply DC voltage on Cr elec-
trodes, respectively. Figure 2(b) illustrates the measured trans-
mission spectrum for the wavelength range from 1540 nm to
1550 nm. Both the fundamental mode and higher-order modes
of the Er3�-doped LN microdisk are excited, which
are labeled with different markers (star, triangle, and square),
and the free spectrum range (FSR) of the 200-μm-diameter
Er3�-doped LN microdisk is measured to be about 1.6 nm.
Figure 2(c) is the experimental setup photographed by a cell
phone, and the strong green upconversion fluorescence in the
Er3�-doped LN microdisk pumped by a 976 nm laser can be
easily noticed.
The intrinsic Q factors of 80 resonant modes on the Er3�-

doped LN microdisk produced in a batch were plotted sta-
tistically in Fig. 3(a), which displays the distribution ofQ factors
with different resonant modes. The loaded Q factor was mea-
sured at low laser power to avoid thermal broadening effects.
The highest intrinsic Q factor of our Er3�-doped LN microdisk
was measured to be 2.13 × 106 through a double Lorentzian fit-
ting at the wavelength of 1542.39 nm, as shown in Fig. 3(b).
Figure 4(a) shows that the resonant wavelength continuously

shifts with the increase of the applied DC voltage; the measure-
ment was performed around the resonant wavelength of

Fig. 1. (a) Schematic of the on-chip Er3+-doped LN microdisk resonator inte-
grated with Cr film electrodes. (b) The top view of the 200-μm-diameter Er3+-
doped LN microdisk from the optical microscope. (c) The enlarged image of
the rim of the Er3+-doped LN microdisk by a 100× microscope objective.

Fig. 2. (a) Schematic of the experimental setup for tunable Er3+-doped LN
microdisk laser. (WG, waveform generator; CTL, C-band tunable laser;
PL, pump laser; PC, polarization controller; PD, photodetector; Osc, oscillo-
scope; OSA, optical spectrum analyzer; VG, voltage generator; OF, optical fiber;
EC, electric cable.) (b) The measured transmission spectrum for the wave-
length of the Er3+-doped LN microdisk laser. (c) The experimental setup
photographed by a cell phone.
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1551.12 nm. Benefiting from the large electro-optical coefficient
of LN crystal and a high Q factor of our microdisk resonators,
we observe that by changing the electric voltage from −200 V to
200 V, a linear dependence of the resonant wavelength on the
pump power is observed, showing that the resonant wavelength
shifts with ∼8.4GHz, as shown in Fig. 4(a). The linear fitting in
Fig. 4(b) confirms that the resonant wavelengths move linearly
with the applied negative and positive voltages across the Er3�-
doped LNmicrodisk, and the tuning rates of the applied negative
and positive voltages are 2.6 GHz/100 V and 1.5 GHz/100 V.
The lasing mode of the Er3�-doped LN microdisk shows a

strong dependence on the applied voltage. As shown in Fig. 5(a),
at the pump laser power of 18 mW, the laser is a single-frequency

lasing emission at the wavelength around 1544.658 nm, and with a
side mode suppression ratio (SMSR) of 29.12 dB. This should be a
result of the strong competition between the lasingmodes of differ-
ent gain efficiencies. Benefiting from the large electro-optical coef-
ficient of the LN crystal, we are able to continuously red-shift the
resonant wavelength by ∼45 pm by increasing the electric voltage
from−200V to 200V, as shown in Fig. 5(b). This observation indi-
cates that the Er3�-doped LNmicrodisk laser provides an efficient
and convenient method for all optical tuning of the on-chip laser
wavelength.

3. Conclusions

To conclude, we have demonstrated an EO tunable microlaser
based on an Er3�-doped high-quality (∼2.13 × 106) LN micro-
disk resonator. The lasing wavelength of the Er3�-doped LN
microdisk laser can be tuned by 45 pm when the voltage is
changed from −200V to 200 V. This device can find interesting
applications in emerging fields including photonic chip, high-
speed optical communication, precision metrology, and artifi-
cial intelligence. Future investigations will focus on the physical
mechanism of single-mode lasing and improving the lasing
wavelength electro-optical tuning range by systematical optimi-
zations of the geometries of the microdisk and the
microelectrodes.
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