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At the mirrors of a laser diode self-mixing interferometer, the output beams carry anti-correlated (i.e., in phase opposition)
interferometric signals, whereas the superposed noise fluctuations are (partially) correlated. Therefore, by using an instru-
mental output of the interferometer as the difference of the two, we double the amplitude of the self-mixing useful signal,
while the superposed noise is reduced. To validate the idea, we first calculate the noise reduction by means of a second-
quantization model, finding that in a laser diode the signal-to-noise ratio (SNR) can be improved by 8.2 dB, typically. Then, we
also carry out an experimental measurement of SNR and find very good agreement with the theoretical result.
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1. Introduction

The self-mixing interferometer (SMI) is a well-knownminimum-
part configuration of interferometry based on the modulations of
the cavity field induced by weak return from the target under
measurement[1]. The modulation indices are the signals
cos�2 kΔs� and sin�2 kΔs� (with k = 2 π=λ and s being distance
to the target) for the amplitude modulation (AM) and frequency
modulation (FM), respectively, which are necessary to trace
back, unambiguously, the displacement Δs[2]. As the process is
coherent, the SMI can work well even with very minute returns
(e.g., down to 10−8 of emitted power). This feature, coupled to the
simplicity of the setup (no external optical parts required, in prin-
ciple), has led to the development of a number of applications
of SMI in the fields of mechanical metrology, biomedical signal
sensing, physical quantity measurements, and consumer prod-
ucts, see, e.g., Refs. [1,3] for reviews.
With detection and processing of the modulated signal, usu-

ally the AM component is preferred because it is readily available
on the laser beam power and conveniently detected by the mon-
itor photodiode (PD) usually provided by the manufacturer on
the rear mirror of the laser package. Using AM, we can make
digital or analogue processing of the SMI signal, respectively,
count fringes of half-wavelengths for displacement measure-
ment and/or to sense vibrations with an output analogue replica
of the signal s�t�waveform, down to a fraction of the wavelength
and even much less with appropriate circuits[2,3].

One specific feature of the SMI is that the interferometric sig-
nal is carried by the beam. It is found not only on the rear output
where the monitor PD2 is placed (see Fig. 1), but also on the
front output, where it can be picked up by a beamsplitter (BS)
and PD1, as well as on the target itself (not shown in Fig. 1) and
on the returning beam by means of PD1 0.
Placing the detecting PD on the target allows us to exploit a

unique property of the SMI, namely, measuring the displace-
ment or vibration of a target from the target location itself while
it is moving, but this possibility will not be developed in this
paper. Another special feature of SMI with a semiconductor
laser is the availability of the signal across the anode-cathode ter-
minals of the laser diode (not shown in Fig. 1), which in this case
works also as a detector—a feature demonstrated for SMI oper-
ation at terahertz (THz) frequency[4]. More commonly, however
the rear PD2 signal is used because it is normally already avail-
able in the laser diode package, and it does not obstruct the path
of propagation to the remote target.
Also, the placement of the detector on the front beam output

is interesting, because the signal here is in phase opposition to
that detected at the rear mirror in semiconductor laser diodes
driven well above threshold, as found by the analysis presented
in Ref. [5].
Therefore, with the difference signal of the two outputs, the

amplitude of the SMI signal improves by a factor of two, as
experimentally verified in Ref. [6].
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Additionally, it is reasonable to expect that the two outputs,
which are generated by the same optical field E0 traveling back
and forth in the laser cavity, are affected by the same noise car-
ried by E0 (that is to say, the two output noises are correlated).
Thus, the difference signal has less noise than the two SMI sig-
nals, or its signal-to-noise ratio (SNR) is further improved.
If this conjecture proves correct, the performance of the

SMI is improved in its ultimate sensitivity or detectable noise-
equivalent-displacement (NED)[2].
In this paper, we analyze the noise of the two outputs (front

and rear) and their difference with a semiclassical noise
model[7], which accounts for second quantization and find that
indeed the two outputs have a partial correlation of noise and
that the SNR can be improved up to about 10 dB by the differ-
ential signal. Then, we test the theoretical results with a 650 nm
laser diode SMI and are able to measure an 8.2 dB improvement
of SNR, which is in good agreement with theory.

2. Theoretical Model and Analysis

To avoid unnecessary complications, we consider the simplified
scheme of Fig. 2 to evaluate the signal and noise of the front and
rear outputs of the laser diode, with the photodetectors placed
directly on the outputs of the laser. The power reflectivities of
mirrors M1 andM2 are R1 and R2, the powers exiting frommir-
rors are P1 and P2, and they are converted into electrical current
signals I1 = σP1 and I2 = σP2 by PD1 and PD2.We suppose that
PD2 is totally absorbing and PD1 is partially reflecting, so as to
act as the target and generate the feedback field re-entering the

laser cavity after propagation to distance s and the accumulated
optical phase shift ϕ = 2ks.
The output power P is related to the electrical field amplitude

E by the well-known Poynting’s relation P = aE2=2Z0, where a is
the cross-section area of the beam, and Z0 is the vacuum imped-
ance. In the following, however, we write simply P1 = E2

1 and
P1 = E2

2 for the powers exiting at mirrors M1 and M2.
Now, we want to calculate the quiescent amplitude of the

fields E1 and E2 as a function of the unperturbed internal field
E0 and their SMI amplitude variations ΔE1 and ΔE2 due to a
feedback from the target at distance s returning into the cavity
with a fraction A of the field E0 (taken just before M1, see Fig. 2).
The problem was solved in Ref. [5] with the following result for
the output field amplitudes E1 and E2 when perturbed by a small
return AE0 from the target along a phase shift ϕ = 2ks:

E1 = t1E0f1 − �t21=r1��A cos ϕ� ��2γL� ln R1R2�−1 − R1=T1�g,
�1�

E2 =
p�r1=r2�t2E0�1 − �t21=r1��A cos ϕ� �2γL� lnR1R2�−1�,

�2�

where A is the attenuation suffered by the field signal on the
go-and-return path; ϕ = 2 ks is the optical phase accumulated
in the path to the target and back, with k = 2π=λ the wavevector
and s the target distance; r1,2 =

p
R1,2 and t1,2 =

p
R = T1,2 are

the field reflection and transmission of mirrors M1 and M2,
respectively; 2γL is the round-trip gain along the laser cavity
of length L; and factor one in curl parentheses indicates the qui-
escent (or unperturbed) value of the field, to which the AM term
induced by the self-mixing is added.
From Eqs. (1) and (2), we can calculate the modulation indi-

ces m1 and m2, defined as the ratio of the SMI signal (the term
added to unity) and the constant unperturbed field superposed
to them, E1,2 for A = 0, and the result is

m1 = �t21=r1��A cosϕ� ��2γL� lnR1R2�−1 − R1=T1�, �3�

m2 = �t21=r1��A cosϕ��2γL� ln R1R2�−1; �4�

hence, the ratio

m1=m2 = 1 − �R1=T1��2γL� ln R1R2�: �5�

Because of Eq. (5), the outputs are in phase (m1=m2 = 1) at
threshold (2γL = − ln R1R2), then, in normal operating condi-
tions above threshold, 2γL� ln R1R2 > T1=R1, and the outputs
become in phase opposition (m1=m2 negative, typically ≈ − 3).
The difference in modulation indices of the rear and front out-
puts is explained by the extra contribution, in the front output,
coming from the reflection; on the front mirror, the field returns
from the remote target.
In practical operation of a laser diode, the amplitudes of the

constant component upon which the SMI is superposed can be
brought to the same value, let us say one, by (noiseless)

Fig. 1. Different pickups of the output signal from an SMI: from rear PD2 and
from front mirrors PD1 and PD1 0 .

Fig. 2. Simplified scheme of an SMI for the evaluation of front and rear output
signals and noise.
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amplification. Then, the SMI signal amplitudes are given just by
the modulation indices of Eqs. (3) and (4).
An interesting feature of these dependences is that the differ-

ence signal is twice the semi-sum of (absolute) amplitudes as
soon as one of the two changes its sign, the case ofm1 at increas-
ing bias. To see this, let us write Eqs. (3) and (4) in the form:
m 0

1 = g − r, andm 0
2 = g. Then, the difference signal ism 0

1 −m 0
2 =

−r at all times. But, when m 0
1 changes its sign, its (positive)

amplitude is r − g and the semi-sum is ½�m 0
1 �m 0

2� = r=2;
accordingly, the ratio j�m 0

1 −m 0
2�j=½�m 0

1 �m 0
2� is equal to

two (in absolute value). For clarity, a numerical example about
this statement is provided in Appendix A.
In conclusion, although the amplitudes of the SMI output sig-

nals and their ratio [Eq. (5)] may change with gain γ—or with
bias current—their difference is always double the average (or
semi-sum) amplitude of the output signals.

3. Noise Model and Calculations

We model the SMI noise with the scheme of Fig. 3 bottom,
which is rigorous from the point of view of second quantization,
as described in Ref. [7]. The oscillating field E0 is assumed con-
stant in the cavity, and the coherent state fluctuation ΔEcoh is
attributed to it. The fluctuation ΔEcoh is a Gaussian noise of
amplitude such that the power P0 = aE2

0=2Z0 carried by the field
E0 has the classical quantum (or shot) noise, σ2p = 2 hνP0B,
where B is the bandwidth of observation[6]. Explicitly, the fluc-
tuation ΔEcoh has zero average, hΔEcohi = 0, and a quadratic
mean value given by hΔE2

cohi = �a=2Z0�½hνB, or, also, a power
spectral density dhΔE2

cohi=df =½hν of a half-photon per hertz.
In the following, we omit for simplicity the factor a=2Z0.
Additional to the noise carried by the oscillating field, we shall

consider also noises entering the unused port of BSs and parti-
ally reflecting mirrors. Indeed, for the second quantization,
every port left unused is actually a port left open to the vacuum
state fluctuation; that is, a field fluctuation, let us call itΔEvac (see

Fig. 3), is equal to the coherent state fluctuation, ΔEvac = ΔEcoh,
consistent with the fact that the coherent state fluctuation ΔEcoh

is independent from the value of the field E0 and is therefore
found also where it is E0 = 0, i.e., at unused ports[7].
With the addition of ΔEvac1 and ΔEvac2 in Fig. 3, the noise

model is complete[7], and we can calculate the fluctuations of
output fields E1 and E2 as well as the variance of noises super-
posed to output powers P1 and P2.
In the classical picture, the output powers P1 and P2 are

affected by the shot noise due to the Poisson distribution of pho-
tons that are carried along, and the variance of the power fluc-
tuation is given by the well-known shot-noise expression
σ2P = 2 hνPB. As it is generated by the same power P0 traveling
back and forth in the cavity, the powers P1 and P2 have some
correlation in their shot-noise fluctuation, but not complete cor-
relation because the mirrors select at random which photon is
transmitted and which is reflected.
In the following, we calculate the variances σ2P1 and σ

2
P2 for the

two outputs, as made up by two terms each: one totally corre-
lated and another totally uncorrelated to the corresponding term
of the other output, so that the first can be cancelled out in a
differential operation, and we can evaluate the SNR improve-
ment thereafter.
With reference to Fig. 3, let us now compute mean value and

variance of power delivered at output 1, P1 = hE2
1i (having omit-

ted for simplicity the multiplying term a=2Z0); also, for simplic-
ity, let us assume equal mirror reflectivity, R1 = R2 = R. Then, at
mirror M1, we can write

E1 = t�E0 � ΔEcoh� � irΔEvac1, �6�

where t =
p
T and r =

p
R are the field transmission and reflec-

tion coefficients of the mirrors,ΔEcoh is the Gaussian, zero aver-
age, and field fluctuation affecting E0 (and independent from
amplitude E0), andΔEvac1 is the same distribution, but uncorre-
lated to ΔEcoh, which enters as the vacuum fluctuation[7] from
the unused port of the BS. The properties are

hΔEcohi= hΔEvac1i= 0, and σ2E = hΔE2
cohi= hΔE2

vac1i=½hνB:

�7�

Now, the mean value of P1 is given by the classical expression
P1 ∝ E2 but subtracted from the square average of the vacuum
field (because this cannot be observed)[7]:

P1 = hjE2
1ji − hΔE2

vac1i: �8�

Inserting Eq. (6) into Eq. (8) we get

P1 = t2E2
0 � t2hΔE2

cohi � r2hΔE2
vac1i � 2t2hE0E2

cohi
� 2trhE0Evac1i � 2trhEcohEvac1i − hΔE2

vac1i, �9�

and, because the second, third, seventh, and the last terms on the
right-hand side cancel out, we get

Fig. 3. Top: the laser diode cavity has mirrors with (power) reflectivity R1 and
R2, and the optical oscillating field E0 is assumed constant inside the cavity;
bottom: the second-quantization model, in which field E0 is accompanied by
the coherent state fluctuation ΔEcoh, and the vacuum state fluctuations
ΔEvac1,2 enter in the unused port of the mirrors, described as a BS because
they have non-unitary transmission.
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hP1i = t2E2
0 � 2t2hE0Ecohi � 2trhE0Evac1i � 2trhEcohEvac1i:

As the mean value of Ecoh and Evac1 is zero, Ecoh and Evac1 are
uncorrelated, and, noting that E2

0 = P0 and t2 = T , we get

hP1i = t2E2
0 = TP0, �10�

i.e., just the expected result.
Variance is calculated as the difference σ2P1 = hP2

1i − hP1i2, or
σ2P1 = t4E4

0 � 4t2hE2
0E

2
cohi � 4t2r2hE2

0E
2
vac1i − t4E4

0 + vanishing
double products.
Substituting t2 = T and r2 = R, we get

σ2P1 = 4T2E2
0hE2

cohi � 4TR E2
0hE2

vac1i, (11)

and, using TE2
0 = P1 and hE2

cohi = hE2
vac1i =½hνB, we finally

obtain

σ2P1 = 2TP1hνB� 2RP1hνB: (12)

Worth noting, as R� T = 1, Eq. (12) is also written as
σ2P1 = 2 P1hνB, that is, the classical variance expected for a
Poisson-statistics power P1.
Now, we can repeat the calculation for exit 2, and it is straight-

forward to write the result as

P2 = P1,

σ2P2 = 4T2E2
0hE2

cohi � 4TRE2
0hE2

vac2i
= 2TP2hνB� 2RP2hνB: (13)

Note that the first right-hand side terms of Eqs. (12) and (13)
are the same as those derived from the same process, the beating
of signal with its coherent state fluctuation, so they are com-
pletely correlated and will be canceled out, making the difference
P = P1 − P2. Instead, the second right-hand side terms of
Eqs. (12) and (13) are completely uncorrelated because they
come from different independent fluctuations, Evac1 and Evac2.
Taking account of the correlations, we get the variance of

P = P1 − P2,

σ2P2−P1 = 4TRE2
0hE2

vac1i � 4TRE2
0hE2

vac2i
= 8TRP0½hνB = 4RP1hνB (14)

to be compared to σ2P1 = σ2P2 = 2P1hνB. Therefore, the ratio of
free and differential variance is

σ2P2−P1=σ
2
P1 = 2R, (15)

and the corresponding SNR, considering the doubling of the dif-
ferential signal becomes

F = �SNRP2−P1=SNRP1�2 = �4=2R�=1 = 2=R: (16)

For a semiconductor laser with a typical R = 0.3, we get

F = 2=0.3 = 6.6 �or 8.2 dB�:

About the output voltage signal V = RtrσP obtained across a
resistance R fed by the PD current I = σP, we have for the SNR
the same ratio, or

�SNRP2−P1=SNRP1�2 = �SNRV2−V1=SNRV1�2 or also
SNRV2−V1=SNRV1 =

p
F, and

20 log
p
F = 10 log F = 8.2 dB:

For a He–Ne laser, the front and rear outputs are in phase, in
the normal operation of the source[5], so the factor two of the
differential outputs is not achieved, and we have F = 1=R.
Moreover, as the reflection coefficient of typical He–Ne mirrors
is R = 0.95–0.98, the improvement in F is marginal.
With a slightly different method based on second quantiza-

tion, Elsasser and coworkers[8] have calculated the correlations
of the output fields in a Fabry–Perot laser, including the effects
of internal absorption and spatial hole burning, with the aim of
generating correlated light beams, and found correlation factors
up to 0.8. The low-frequency suppression of 1=f components in
a laser diode by output subtraction has been investigated by
Fronen[9] finding almost complete correlation between the
two outputs.

3.1. Extension of the noise results

Usually, Fabry–Perot semiconductor lasers have cleaved facets,
so R1 = R2 and the results of previous sections apply. However,
one can come across lasers with R1 ≠ R2, and, therefore, we
extend the theory to the general case of different mirror
reflectivity.
By repeating the calculations of previous sections, we find

that, upon equalizing the output power amplitudes, the variance
of the output difference is given by

σ2P2−P1 = 2�R2T1 � R1T2�
p�R1R2�P00hvB,

where P00 is the power at the crossover point internal to the laser,
at which left-going and right-going beams are of equal power.
Moreover, the variances of the outputs—after balancing the
mean power signal—are

σ2P1 or 2 = 2
p�T1T2�

p�R1R2�P00 hνB;

hence, the variance ratio becomes

σ2P2−P1=s
2
P1 or 2 = �R2T1 � R1T2�=

p
T1T2, (17)

for R2 = R1 = R, and T1 = T2 = T , and Eq. (17) gives the same as
Eq. (15). Also, the improvement in SNR is given by
F = 2

p�T1T2�=�R2T1 � R1T2�, which becomes F = 1=2R for
equal R and T .

3.2. Picking the front output signal

As mentioned above, the receiving PD placed on the front out-
put of mirror M1 can also serve, with its transparent window
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reflecting a few percent of the incoming radiation, as the target
surface while intercepting practically all of the power P1 avail-
able. However, when this arrangement is not allowed by the
application, normally because of its invasiveness, we can use
either a BS, deviating a fraction of the power in transit to the
P1, as shown in Fig. 4 (top), or a partial removal of the outgoing
beam (see below).
The BS offers a compact solution to power pickup, because it

may be as small as the beam, but has the serious disadvantage of
opening a port to the vacuum fluctuation, term ΔEvacBS in Fig. 4
(bottom).
The calculation of powers and associated variances follows

the guidelines of previous sections, and, for brevity, we will omit
here the detailed development of the analysis, limiting ourselves
to report the results. For R1 = R2 = R, it is found that the power
at the detector PD1 is given by

P1BS = �rBSt�2E2
0 = RBSP1 = TRBSP0, (18)

while the power at the other mirror is still P1 = t2E2
0 = TP0,

larger than P1BS, and this circumstance will generally require
a balance operation to get equal amplitude levels. The variance
of fluctuations associated with P1BS is

σ2P1BS = 2TRBSP1BShνB� 2�RRBS � TBS�P1BShνB

= 2TR2
BSP1hνB� 2RBS�RRBS � TBS�P1hνB: (19)

After the (noiseless) power amplification by factor 1=RBS to
equalize the amplitude of P1BS before subtracting P2, so that
we obtain P1 − P2 = 2 P1, we get the equalized variance σP1BS�eq�:

σ2P1BS�eq� = σ2P1BS=R
2
BS

= �2TR2
BSP1hνB� 2RBS�RRBS � TBS�P1hνB�=R2

BS

= 2TP1hνB� 2�R� TBS=RBS�P1hνB (20)

to be compared with

σ2P1 = 2TP1hνB� 2RP1hνB,

where the first terms (correlated) cancel out again, and the sec-
ond terms give the difference as

σ2P2−P1 = 2�2R� TBS=RBS� P1hνB,

and SNR2
P1−P2 = �4=2�2R� TBS=RBS�� �P1hνB�

= �2=�2R� TBS=RBS�� �P1hνB� (21)

to be compared to the single-channel SNR2
P1 = P1=2 hνB, where

the final result

F = �SNRP2−P1=SNRP1�2 = 2=�R� TBS=2RBS�: (22)

From Eq. (22), we can see that the BS affects severely the
improvement factor F. Indeed, if we chose a 50=50 BS, F would
be less than two. For the improvement to be comparable to F =
2=R of the direct configuration (Fig. 2), we shall limit TBS=2RBS

to a fraction of R; for example, taking TBS = 0.05 to have
F = 7.8 dB, or TBS = 0.10 for F = 7.5 dB. At these low values
of transmittance, almost all of the power of the M1 output is
taken by the PD, and only a small fraction of TBS is used to sense
the remote target. As a consequence, the SMI signal is decreased,
and the performance is worsened, so that the improvement of F
of the differential output becomes illusory.
The second method, consisting of sampling the outgoing

beam by removing a small portion of it by means of a totally
reflecting prism (or a mirror) is depicted in Fig. 5.
The power collected by this arrangement is the ratio of areas

a 0 and a� a 0 of the intercepted beam and the total beam, or
P1 P = �a 0=�a� a 0��P1 (Fig. 5). However, at equal a 0=�a� a 0�
and RBS, the fractional pickup of the beam is dramatically differ-
ent from the BS pickup, because it does not open the port to the
vacuum fluctuations (as the BS in Fig. 4 does). This is due to the
total reflection of the prism (or of a mirror in place of it) that
makes the arrangement a two-port device instead of the four
ports of the BS (Fig. 4).
Therefore, for this configuration, the expressions of variance

[Eqs. (12) and (13)] hold with P1 replaced by P1 P, and the vari-
ance ratio of the signal difference [Eq. (14)] and the improve-
ment [Eqs. (15) and (16)] also apply.

Fig. 4. (top) Pickup of the front SMI signal by means of a BS, deviating a frac-
tion RBS of power P1 to PD1; (bottom) equivalent circuit for the evaluation of
noise, showing the added fluctuation ΔEvacBS entering in the unused port
of the BS.

Fig. 5. Portion a 0 of the beam outgoing from mirror M1 by means of a reflect-
ing prism.
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4. Experimental Validation

We carried out the experiment with a 650 nm diode laser,
Roithner QL65D6SA with a Fabry–Perot structure. The laser
had a threshold of 30 mA and was biased at 40 mA and emitted
at 5 mW. The monitor PD incorporated in the package supplied
a 0.2 mA current, so it was receiving only about 10% of the
power emitted by the rear mirror. This simplified the balancing
operation with the 10% = a 0=�a� a 0� power picked up by a
3.1 mm side rectangular prism on the beam of about w0 =
10mm at the exit of an F = 5mm, NA = 0.53 collimating lens.
PD1 was fed to a transimpedance amplifier with Rf 1 = 4.7 kΩ
feedback resistance and PD2 to another transimpedance ampli-
fier feedback resistance Rf 2 adjustable between 1 and 10 kΩ. A
difference operational amplifier provided a signal proportional
to PP1 − P2, and its output was directly sent to a digital oscillo-
scope. The target was a loudspeaker placed at 10 cm distance,
with the central part covered by plain white paper. To balance
the two channels, we applied a 1.5 mA triangular waveform to
the bias current and adjusted Rf 2 so as to reach the condition of
equal amplitude, or near to zero difference, as shown in Fig. 6.
Then, we analyze the difference signal PP1 − P2 and its fluc-

tuations, both in the frequency domain by means of a spectrum
analyzer and as a total amplitude by means of an ac-coupled rms
voltmeter.
In Fig. 7, we report the result of spectral noise measurement of

the two channels PP1 and P2, and of their differential fluctuation,
which is 2.5 dB smaller. Taking account of the doubling of sig-
nals [which amounts to 6 dB for their square, see Eq. (22)], the
SNR improvement is 2.5� 6 = 8.5 ± 1 dB.
We have also measured the total amplitude fluctuations of the

two channels and of their difference and found that the improve-
ment is even better than that recorded by the spectral density,
typically of 2–3 dB. This is due to the presence, on both channels,
of electrical disturbance (i.e., electromagnetic interference, EMI)
and the 1=f noise component collected almost equally by both
channels and obviously cancelled by the difference operation.
For example, in Fig. 8, we report an example of the SMI channels
deliberately disturbed by an EMI perturbation generated by the

brushes of an electrical motor placed in close proximity to the
optical SMI. The series of peaks at frequencies from 30 to
300 kHz are reduced in amplitude by about 25 to 30 dB thanks
to the difference operation.

5. Conclusions

We have demonstrated that the difference signal of the two out-
puts—front and rear—of a laser diode SMI has an improved
SNR with respect to each of the two outputs. On a Fabry–
Perot laser, we have measured an improvement of 8.5 ± 1 dB,
which is in good agreement with the theoretical value of
8.2 dB. We have also found that EMI collected by the two chan-
nels is strongly reduced (of 25–30 dB) by the difference opera-
tion. The improvement is due to the two signals being in phase
opposition above the threshold and to the partial correlation of
the noises as shown by an analysis based on a second-quantiza-
tion model.

Appendix A

Let us make some exemplary cases calculating the values ofm1,2

normalized to �t21=r1��A cos ϕ� using Eqs. (3) and (4). Let us
assume for our semicondictor laser diode that R1,2 = 0.3,

Fig. 6. Balancing of the two SMI signals detected by PD1 and PD2: a triangular
waveform is applied to the bias and generates detected responses brought to
be nearly identical (top trace), that is, with a residually small difference (bot-
tom trace).

Fig. 7. Signals detected by PD1 and PD2 (red and blue) and their difference
(yellow), exhibiting a noise 2.5 ± 1 dB smaller.

Fig. 8. Peaks of EMI superposed to the SMI of channels PD1and PD2 (yellow
and yellow–green) and the difference channel (red), exhibiting a disturbance
reduction of 25 : : : 30 dB.
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so that ln R1R2 = −2.40, and R1=T1 = 0.428. At threshold,
2γL = − ln R1R2 = 2.40. Then, we have, at various values of
round-trip gain, 2γL, as shown in Table 1.
As we can see, when signalm1 changes sign, the ratio of differ-

ence to the semi-sum of amplitudes (the absolute values of m)
becomes equal to two.
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