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We propose and demonstrate a sensitive vector twist sensor based on a small period long period fiber grating (SP-LPFG)
fabricated with a femtosecond (fs) laser. The fabricated SP-LPFG is compact in size (2.8 mm) and shows strong polarization
dependent peaks in its transmission spectrum due to the vectorial behavior of high-order cladding modes. Twist sensing is
realized by monitoring the polarization dependent peaks, since the polarization of input light changes with fiber twist. The
proposed sensor can be interrogated by the peak intensity and wavelength, with high twist sensitivity that reaches
0.257 dB/deg and 0.115 nm/deg, respectively.
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1. Introduction

Twist (torsion) is an important parameter that reflects the stress
state and health condition of structures such as bridges.
Recently, the application of optical fiber sensors (OFSs) in twist
sensing has intensified, due to their advantages of flexibility,
light weight, and resistance to electromagnetic interference.
Though many different schemes have been proposed, optical
fiber twist sensors (OFTSs) can be mainly classified into two
types: one interrogated with wavelength (e.g., specially designed
fiber gratings[1–8], Sagnac interferometer[9–11], and helical fiber
structure[12–14]), and the other with intensity (e.g., Solc filter[15],
Lyot filter[16], Mach–Zehnder interferometers[17–19], and fiber
gratings[20–30]). Note that for the first type, the wavelength mea-
surement involves the use of an expensive and bulky optical
spectrum analyzer (OSA) or tunable narrow-linewidth laser,
whereas, for the second type, intensity measurement only
requires an optical power meter (or photodetector), which
allows more compact and cost-effective interrogation than the
first type. In this regard, OFTSs allowing intensity interrogation
are more preferred.
The intensity-interrogated OFTSs can be further categorized

into two main types: fiber interferometers and fiber gratings.
The construction of fiber interferometers usually requires the
use of special fiber[1–17] or modification of the fiber physical

structure[18,19], which decreases the fiber mechanical strength,
and the length of fiber interferometers can be very long (e.g., a
96 m long elliptical-core spun fiber is used in Ref. [15]). Fiber
gratings can be directly introduced into the fiber without dam-
aging the fiber physical structure, maintaining the mechanical
strength and enabling more compact and stable twist sensing.
To realize intensity-interrogated fiber grating twist sensors,
one common principle is introducing a polarization dependent
element (PDE)[20–29]. In this way, when the fiber is twisted, the
input polarization entering the PDEwill also change, resulting in
a change of the output intensity of the PDE. Currently, fiber-gra-
ting-based PDEs mainly include a tilted fiber grating[20–26],
phase shift fiber Bragg grating (FBG)[27], angularly cascaded
long period fiber grating (LPFG)[28], and grating in special fiber,
such as polarization maintaining fiber[29].
Recently, we found that polarization dependent coupling can

be achieved in LPFGs withmuch smaller grating periods, i.e., the
so-called small period LPFG (SP-LPFG)[31]. Thanks to the
strong polarization dependence, SP-LPFGs are good candidates
for the PDE in twist sensing applications. In this work, we pro-
pose and demonstrate a sensitive OFTS based on an SP-LPFG
that is inscribed with a femtosecond (fs) laser in a normal single
mode fiber (SMF). The adopted SP-LPFG is compact in size with
a total length of only 2.8 mm and is insensitive to strain and tem-
perature change. Apart from intensity-based interrogation, the
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proposed sensor also exhibits sensitive wavelength shift to twist
and thus can be interrogated by wavelength.

2. Principle and Fabrication

As shown schematically in Fig. 1, LPFG is a kind of all in fiber
device that consists of periodic modification along the fiber axis
(usually themodification of the refractive index). In LPFGs, light
of the core mode is coupled to fiber cladding modes, which
attenuates quickly, leaving serial attenuation peaks in the trans-
mission spectrum of the LPFG. The wavelengths of those attenu-
ation peaks can be determined from the phase matching
condition:

λpeak = �neff -co − nieff -cl� · Λ, (1)

where neff -co and nieff -cl are the effective indexes of the core mode
and cladding mode, with i denoting the cladding mode order,
and Λ is the grating period. Standard LPFGs usually have a
period of several hundred micrometers, and core mode light
is coupled to low-order cladding modes that satisfy the weakly
guiding approximation, whereas in SP-LPFGs, with a small gra-
ting period less than 50 μm, coupling to high-order cladding
modes is enabled. These high-order cladding modes are far away
from weakly guiding regime and present strong vectorial
behavior[32–34], resulting in the strong polarization dependent
peaks in SP-LPFGs. Such strong polarization dependence makes
SP-LPFGs good candidates for the PDE in twist sensing
applications.
In our experiment, a fs laser (800 nm, 1 kHz, 150 fs) was

focused into the core of a stripped SMF (SM 28) by a 100× objec-
tive lens. The stripped SMF was mounted on a high resolution
three-dimensional stage to gain translational motion relative to
the laser focus. To keep the fiber straight, constant axial stress is
applied to the fiber. The fiber positon was monitored by a CCD
camera, guaranteeing that the fiber is at the right position. The
whole fabrication process was controlled by a computer. To fab-
ricate the LPFG, a pulse energy of 200 nJ was used, and the fiber
was translated along the fiber axis with a constant speed of
20 μm/s; at the same time, the laser was turned on and off peri-
odically by amechanical shutter to introduce the periodic refrac-
tive index modulations (RIMs) into the fiber core, which
construct the grating. During the fabrication, the transmission
spectrum of the LPFG was monitored by an OSA in real time.

Figure 2 depicts the experimentally measured transmission
spectrum of the fabricated grating, which has a period of
40 μm and a duty cycle of 50%, and 70 periods are introduced,
corresponding to a total length of 2.8 mm (see inset of Fig. 2).
This length is much more compact than that of normal LPFGs
(usually tens of millimeters), since the induced RIM is highly
localized in the core, i.e., occupying part of the fiber core in
the cross section. Compared with the RIM that occupies the
whole core transversely in normal LPFGs (Fig. 1), such highly
localized RIM suppresses the cancellation of negative and pos-
itive coupling to high-order cladding modes, thus allowing
much stronger coupling. The spectrum in Fig. 2 is measured
with un-polarized light, where the deepest dip shows strength
of ∼15 dB. The insertion loss is ∼4 dB (indicated by the red dash
line in Fig. 2), which mainly results from Mie scattering of the
localized RIM[35]. The insertion loss can be reduced by using
decreased laser energy, at a cost of lower coupling efficiency,
which should be balanced according to the requirements of
practical applications. Note that though a relatively higher pulse
energy is used, the grating survives at> 3000 με strain, which is
comparable to LPFGs inscribed with a CO2 laser

[36], indicating
that the mechanical strength of the grating is well maintained.
To realize polarization-related twist sensing, more of our con-

cern is the polarization dependence. During the measurement,
the polarization of light entering the grating is controlled by a
polarizer followed by a polarization controller (PC), and the
measured spectra of the peak around 1528 nm for two orthogo-
nal polarizations are shown in Fig. 3. It can be seen from Fig. 3
that two peaks are fully distinguishable with polarized input
light, and a strength over 25 dB is achieved for one of the
polarizations (blue line in Fig. 3). Such strong polarization
dependence mainly results from the vectorial nature of the
high-order cladding modes, since the grating period is very
small[31]. Sensitive twist sensing will be achieved by the strong
polarization dependence, as will be discussed in the next section.

Fig. 1. Schematic of long period fiber grating.

Fig. 2. Transmission spectrum of the fabricated grating measured with un-
polarized light. Inset shows the photograph of the grating, where the grating
length is indicated by the red light scattered out of the fiber, and the interval
of the ruler is millimeters (mm).
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3. Experiment and Discussion

The schematic of the setup for twist sensing is depicted in Fig. 4,
broadband light from a super-continuum (SC) source passes

through a polarizer, providing the initial polarized light whose
polarization is controlled by the following PC, and the evolution
of the output spectrum is monitored with an OSA. The grating is
fixed between a fiber holder and a fiber rotator with an engraved
dial. During the measurement, the grating is slightly strained to
keep it straight, thus eliminating the unwanted perturbation
such as bending.
Before rotating the fiber, we adjusted the initial polarization

state using the PC to fully excite the peak on the shorter wave-
length side (represented by P1 in Fig. 3). To characterize the
twist sensing properties of the grating, the fiber rotator was
rotated by 180 deg clockwise with 10 deg steps, and the trans-
mission spectrum was recorded every 10 deg. Figure 5(a) shows
the spectral evolution of the grating under twist. It can be clearly
seen that, with the increase of twist angle, the strength of the
peak on the short wavelength side decreases [see black circles
in Fig. 5(a)], and beyond certain angles, this peak fully disap-
pears, whereas the other peak appears and starts to grow. The
dependence of the peak intensity on twist angle is depicted in
Fig. 5(b), which shows a sine-like function that agrees with pre-
vious reports[24]. The slopes of two linear fitting regions from 0
to 40 deg and from 130 to 170 deg are 0.257 dB/deg and
−0.131 dB=deg , respectively. In view of the practical applica-
tion, the grating can be pre-twisted to this region in order to
achieve a high sensitivity and linear response. The twist direc-
tion can also be detected with the pre-twist, depending on
whether the peak intensity increases or decreases. It should be
noted that the peak intensity is not amonotonic function of twist
angle, i.e., different twist angles can result in the same peak

Fig. 3. Transmission spectra of the fabricated grating with two orthogonal
input polarizations (P1 and P2).

Fig. 4. Schematic of the experimental setup for twist sensing. SC, super-con-
tinuum source; PC, polarization controller.

Fig. 5. Evolution of (a) transmission spectra (peak positions are denoted by black circles), (b) peak intensity, (c) peak wavelengths with increasing twist angle, and
(d) wavelength-interrogated twist sensitivity calculated from the fitted function at each measurement point.
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intensity. Therefore, to guarantee reliable twist sensing, the
detectable angle range using peak intensity should be limited
to 90°, or supplementary judgment by wavelength [Fig. 5(c)]
is required.
It can be seen from Fig. 5(a) that the peak wavelength

[denoted by black circle in Fig. 5(a)] also evolves with twist
angle, suggesting that the grating can also work as a wave-
length-interrogated twist sensor. Figure 5(c) depicts the peak
wavelength as a function of the twist angle, where the wave-
length evolution of the deepest peaks is fitted with quadratic
functions separately [see blue and red lines in Fig. 5(c)].
Figure 5(d) shows the sensitivity calculated from the fitted func-
tion in Fig. 5(c) at each measurement point, with a maximum
sensitivity of ∼0.115 nm=deg .
A comparison between our work and several typical previ-

ously reported OFTSs based on the fiber grating is listed in
Table 1, including tilted FBG (TFBG) both in SMF and multi-
mode fiber (MMF), and helical LPFG (HLPFG), where the unit
of the twist sensitivity is unified for convenient comparison. It
can be seen from Table 1 that our SP-LPFG sensor offers high
sensitivity as well as compactness and vector sensing ability,
while requiring no additional coating or use of a special fiber.
Moreover, the measured wavelength sensitivity in Fig. 5 is
higher than many of the reported schemes (see wavelength-
interrogated schemes in Table 1), indicating the potential of the
SP-LPFG in wavelength-interrogated twist sensing application.
The cross sensitivity of the proposed twist sensor to strain is

also characterized, utilizing the setup depicted in Fig. 4. To
investigate the influence of strain on twist sensing, the spectral
response of the grating to strain is measured with pre-twist
angles of 10, 30, and 50 deg, respectively. Figure 6 depicts the
measured evolution of peak intensity and wavelength with
increasing strain, where the linear fitting for each measurement

Table 1. Sensing Performance of Fiber-Grating-Based Twist Sensors.

Interrogation Method Sensitivity Length (mm) Orientation Reference (year)

Intensity SP-LPFG 0.257 dB/deg 2.8 Vector This work

Cascaded LPFGs −0.268 dB=deg 47.56 Scalar [28] (2018)

ITO-coated TFBG 0.274 dB/deg 15 Vector [21] (2020)

SMF-TFBG 0.299 dB/deg 10 Scalar [23] (2014)

MMF-TFBG 0.075 dB/deg NA Vector [22] (2014)

Phase shift FBG 0.088 dB/deg 1.72 Vector [27] (2016)

Cascaded HLPFG 0.0074 dB/deg 58 Vector [30] (2014)

Wavelength SP-LPFG 0.115 nm/deg 2.8 Vector This work

CO2 LPFG 0.019 nm/deg 20 Vector [2] (2004)

HLPFG 0.067 nm/deg 34 Vector [5] (2017)

Improved HLPFG 0.029–0.11 nm/deg 18–36 Vector [37] (2020)

Fig. 6. Evolution of (a) peak intensity and (b) peak wavelength with increased
strain, when the grating was pre-twisted with an angle of 10 deg (blue circles),
30 deg (black rectangles), and 50 deg (magenta triangles). The linear fitting of
the evolution is depicted by red lines.
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is also shown (see the red lines in Fig. 6). We can see that the
slope of each fitting is very small, with a maximal slope of
0.000033 dB/με for peak intensity and −0.000157 nm=με for
peak wavelength, suggesting that the proposed twist sensor is
insensitive to strain, which is one of the important perturbations
in twist measurement.
We also characterized the cross sensitivity of the proposed

grating to temperature, which is another important perturbation
in twist measurement. During the characterization, the grating
was heated from 30°C to 60°C with 5°C steps, under pre-
twist angles of 10, 30, and 50 deg, respectively. The measured
results are depicted in Fig. 7, with the maximal coefficient of
0.0095 dB/°C for intensity interrogation [Fig. 7(a)] and
0.0037 nm/°C for wavelength interrogation [Fig. 7(b)], respec-
tively, indicating a low temperature cross sensitivity.

4. Conclusion

To conclude, a sensitive vector twist sensor based on SP-LPFG is
proposed and demonstrated. The SP-LPFG is much more

compact compared with normal LPFGs, with a total length of
only 2.8 mm. The proposed twist sensor can be interrogated by
both intensity and wavelength, and high twist sensitivity of
0.257 dB/deg and 0.115 nm/deg is achieved for the two interrog-
ation schemes. Such high sensitivity is achieved without modi-
fying the physical structure of the fiber, such as post-coating or
partially removing the fiber cladding, enabling more stable gra-
ting structures. Moreover, the proposed sensor is insensitive to
strain and temperature, which are two of the most important
perturbations in twist measurement.With the above advantages,
the proposed sensor is a good candidate for structure monitor-
ing applications.
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