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The multimode fiber (MMF) has great potential to transmit high-resolution images with less invasive methods in endoscopy
due to its large number of spatial modes and small core diameter. However, spatial modes crosstalk will inevitably occur in
MMFs, which makes the received images become speckles. A conditional generative adversarial network (GAN) composed of
a generator and a discriminator was utilized to reconstruct the received speckles. We conduct an MMF imaging exper-
imental system of transmitting over 1 m MMF with a 50 μm core. Compared with the conventional method of U-net, this
conditional GAN could reconstruct images with fewer training datasets to achieve the same performance and shows higher
feature extraction capability.
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1. Introduction

Endoscopes are the devices that acquire images or other infor-
mation through thin tubular structures, which have gradually
developed into popular tools in medical and industrial fields[1].
Optical fiber bundles consisting of many single mode fiber cores
are widely applied in endoscopes for image transmission[2].
However, the imaging resolution of the fiber bundle suffers from
the coupling of light between adjacent cores when the cores are
not sufficiently spaced from the others. With the increasing
demand for imaging in medical and other fields, the imaging
system with both higher resolution and smaller access diameter
is very urgent. Multimode fibers (MMFs) own a large number of
transmittable modes for unparalleled information transport and
ultra-thin shape, which makes single fiber imaging possible.
However, due to the strong mode coupling and interference
within the MMFs, the images cannot be obtained directly.
When the modulated coherent light passes through the MMF,
a variety of transmission modes are excited and coupled with
each other, which leads the received images at the distal end
to become random speckle patterns. Moreover, the local defects
along the MMFs also cause mode coupling and inter-mode
interference, and the speckle patterns can be formed even after
transmitting over a few millimeters[3,4]. Therefore, the main
challenge of MMF imaging is how to reconstruct the original
images from speckle patterns.
Some approaches developed from computational imaging[5,6]

such as phase conjugation, digital scanning, and holographic

technique have been used to address the issues in MMF imaging
systems[7–10]. However, these approaches are almost based on
calibration, which are difficult in practical applications due to
the low speed. Deep learning showed the potential to speed
up the image reconstruction of MMFs and improve the robust-
ness of environment. By training a deep neural network (DNN)
with a large amount of captured data, the images transmitted
through MMFs can be recovered very fast [∼milliseconds
(ms)] by the DNN, and this process is calibration free[11,12].
U-net, which is powerful for image segmentation and restora-
tion, has been verified to provide decent results for the image
reconstruction from the MMF speckles. However, the conven-
tional training strategy, i.e., using L2 loss functions, usually
requires tens of thousands of image pairs for training, which
brings a challenge for the training data acquisition.
Generative adversarial networks (GANs) are utilized to opti-

mize the DNNmethod. GAN was first proposed to get the natu-
ral image distribution from a random vector[13]. However, the
GAN model uses an extensive training method during training,
where all training samples are fed into the model for training
without constraints. Therefore, the GAN model is uncontrol-
lable when it is used for image generation, which leads to the
generated image's unpredictability. A framework of conditional
GANwas proposed by conditioning on an input image and gen-
erating a corresponding output image, which shows high perfor-
mance in image-to-image translation tasks[14]. In this paper, we
explore a new training strategy, which employs the framework of
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conditional GAN to recover the images transmitted
through MMFs.

2. Operating Principle

The structure of the conditional GAN is shown in Fig. 1.
Figure 1(a) is the network of the generator, which is a U-net
in essence. The sizes of the input layer and output layer are deter-
mined by the resolution of the input image. The generator is di-
vided into a contraction path and an expansion path in the
network structure setting. The discriminator is a convolutional
neural network. The input of the discriminator is the ground
truth or the output image of the generator splicing with a cor-
responding speckle pattern, which follows the idea of condi-
tional GANs, as shown in Fig. 1(b). The generator is trained
to confuse the discriminator, which aims to make the discrimi-
nator fail to distinguish the output of the generator from the real
images, while the discriminator is trained to distinguish the
output of the generator as fake as far as possible. Unlike the dis-
criminator in the conventional GAN, which determines whether
the image generated by the generator matches the distribution of
the real sample set, the function of the discriminator in this con-
ditional GAN is to determine whether the image generated by
the generator is the same as the label image of the real sample
set. The objective of the conditional GAN is defined as[14]

LcGAN�G,D� = Ex,y�logD�x,y�� � Ex,zflogf1 − D�x,G�x,z��gg,
(1)

where x is the received speckle pattern, y is the ground truth, and
z is the random noise introduced in the dropout layer of the gen-
erator. The generatorG aims tominimize the objective, while the
discriminator D aims to maximize it. In addition, a traditional
loss L1 is also applied to make the generator produce the images
close to the target images and reduce image blur, which is
defined as

L1 = Ex,y,z�ky − G�x,z�k1�: (2)

Therefore, the final objective is[14]

G� = arg min
G

max
D

LcGAN�G,D� � λL1�G�, (3)

where λ is a hyperparameter to balance the effects of the dis-
criminator and L1 on generator training.

3. Experimental Setup and Results

The experiment setup is built as shown in Fig. 2 in order to get
training data. AHe–Ne laser (ThorlabsHNL210LB) operating at
632.8 nm generates a narrow laser beam. The laser beam illumi-
nates a 1280 × 768 pixels digital micromirror device (DMD, V-
7001, VIALUX) after transmitting through an optical expander
(Edmund #2186) and an attenuator (NDC-100C-4M). The
DMD modulates the gray-scale images onto the incident beam
in amplitude by controlling the deflection of the internal micro-
mirror. Then, the beam is coupled into a stable 1-m-long MMF
(50-μm-core, Thorlabs) by the microscope objective lens (OBJ1,
PLN 40× objective and single port tube lens, Olympus)
and magnified by OBJ2 (the same as OBJ1). After that, the out-
put speckle patterns are captured by a 1280 × 768 pixels CCD
camera (PL-D721, PixeLINK).
TheModified National Institute of Standards and Technology

(MNIST) database and Fashion-MNIST database are used as
input datasets, respectively. The images with a resolution of 28 ×
28 pixels are padded to 32 × 32 pixels as the ground truth. The
input images are then adapted to the 1024 × 768 pixels DMD by
the operation of zero-padding and up-sampling.We can acquire
one 512 × 512 pixels speckle pattern for every single image dis-
played on the DMD. Finally, the speckle patterns are resized into
32 × 32 pixels in the MNIST dataset and 128 × 128 pixels in the
Fashion-MNIST dataset to facilitate subsequent processing.
U-net has been proved to solve the image reconstruction

problem with the MNIST dataset in MMF imaging system. In
this conditional GAN, the structure of the generator is similar
to the U-net, as shown in Fig. 3, which contains a down-
sampling unit and an up-sampling unit. The down-sampling
unit is made of several stride convolutional layers, which uses
rectified linear units (ReLU) as the activation function. The fea-
tures of the input image are concentrated in the bottleneck layer

Fig. 1. Structure of the conditional GAN; (a) architecture of the generator;
(b) principle of the discriminator. G, generator; D, discriminator.

Fig. 2. Experiment setup. DMD, digital micromirror device; OBJ, microscope
objective lens; MMF, multimode fiber; CCD, charge-coupled device.
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with a resolution of 1 × 1 × 256. The up-sampling unit is distrib-
uted symmetrically with the down-sampling unit, which has sev-
eral deconvolutional layers. Skip connections are added between
the down-sampling layers and the up-sampling layers with the
same size. Due to the higher complexity of the Fashion-MNIST
dataset, the resolution of the input speckle pattern and the depth
of the network are increased. We use an asymmetric U-net-like
network with input resolution of 128 × 128 × 1 and out resolu-
tion of 32 × 32 × 1 as the generator. At the same time, the res-
olution of the bottleneck layer is set to 2 × 2 × 512 to prevent
overfitting caused by an excessively deep network.
The discriminator is a convolutional neural network, which is

shown in Fig. 4. The input is the speckle pattern concatenated
with the image generated by the generator or the ground truth.
The 32 × 32 × 2 input is followed by several convolutional
layers. Finally, an eigenmatrix is output for discrimination.
When the input contains the ground truth, the label is set to
all ones, indicating that the input is real. If not, it is set to all zeros
indicating that the input is fake.
It is known that an image often has a low-frequency part and a

high-frequency part. L1 in Eq. (2) could enforce correctness at
the low frequencies[15]. In order to process the high-frequency
part, a discriminator architecture called “PatchGAN” is applied,

which divides the whole image into small patches and discrim-
inates the authenticity of each patch, respectively[14]. The patch
corresponds to the receptive field of the convolutional neural
network[16]. The larger receptive field is implied to the larger
area of the image map pixels, which better reflects the global
and holistic areas. The smaller receptive field is implied to the
smaller area of the image map pixels, which can reflect more
locality and detail. Therefore, the larger value of the patch leads
to the deeper discriminator network and higher discriminating
ability in the low-frequency parts of images. Meanwhile, the
lower value of the patch leads to the shorter discriminator net-
work and higher discriminating ability in the high-frequency
parts of images. “PatchGAN” makes the networks have fewer
parameters and run faster with high-quality results. In the fol-
lowing experiments, different sizes of the receptive field are tried
in the training of the discriminator to achieve the best perfor-
mance. The size of the receptive field needs to be adjusted by
hyperparameters of convolutional layers. The input 32 × 32
image is convolved with a kernel size of 4 × 4 and a stride of
two. In addition, we separately convolve the input image with
a kernel size of 1 × 1 and a stride of one to discriminate the
image by each pixel. The resolution and receptive field of the
discriminator output vary with the different numbers of convo-
lutional layers, which are shown in Table 1.
Firstly, the networks are trained with different output resolu-

tions and receptive fields of discriminators for 100 epochs. We
collect 500 speckle patterns of theMNIST dataset. All of the pro-
grams are run in Python 3.7 environment with NVIDIAGeforce
GTX1080 graphics processing unit (GPU). We train our net-
works with an Adam optimizer, and the learning rate is set as
10−4[17]. In the following experiments, the loss function and
the optimizer are set as the same. The peak signal-to-noise ratio
(PSNR) and structural similarity (SSIM) are utilized to evaluate
the similarity between the reconstructed image and the ground
truth. As shown in Fig. 5, with the increase of output resolution,
the detail of generated images becomes clearer. However, when
the output resolution is too large, the discriminator attaches too
much importance to the high-frequency part of the image,
which makes the generated image appear fuzzy to a certain
extent.

Fig. 3. Structures of generator in the (a) MNIST experiment and (b) Fashion-
MNIST experiment.

Table 1. Relationship between the Receptive Field and Convolutional Layer.

Number of Convolutional
Layers

Kernel
Size Stride

Output
Resolution

Receptive
Field

1 1 × 1 1 32 × 32 1 × 1

1 4 × 4 2 16 × 16 4 × 4

2 4 × 4 2 8 × 8 10 × 10

3 4 × 4 2 4 × 4 22 × 22

4 4 × 4 2 2 × 2 46 × 46

5 4 × 4 2 1 × 1 94 × 94Fig. 4. Structures of discriminator in the (a) MNIST experiment and
(b) Fashion-MNIST experiment.
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In the MNIST experiment, reconstruction images with an
8 × 8 output resolution achieve the best performance in both
PSNR and SSIM, and the corresponding receptive field is
10 × 10, as shown in Fig. 5(a). In the Fashion-MNIST experi-
ment, the images are relatively complex and have more high-
frequency features; therefore, the receptive field of the
discriminator should be relatively smaller. We also obtain the
reconstructed images with different output resolutions, as
shown in Fig. 5(b). It shows that the best reconstruction perfor-
mance is achieved when the output resolution is 16 × 16, and the
receptive field size is 4 × 4. Setting up the appropriate output
resolution could decrease the time of network training together
with high-quality results. Accordingly, we set the discriminator
with the above resolution in the following experiments, and the
discriminator network structure is shown in Fig. 4.
After training the conditional GAN, we compare its perfor-

mance with that of U-net. The structure of U-net for comparison
is similar to that of the generator. In the U-net of the MNIST
experiment, the bottleneck layer is 4 × 4 × 256 after only three
convolutional layers. In the U-net of the Fashion-MNIST
experiment, the bottleneck layer is 4 × 4 × 512 after only four
convolutional layers. The conditional GAN and U-net in the
two experiments are trained by 2800 training sets and 4800
training sets for 100 epochs, respectively. As shown in Fig. 6,
with the increase of training epochs, the loss decreases gradually,
and finally both networks converge. Due to the process of adver-
sarial training, the training process of conditional GAN is not
quite stable compared with that of U-net. The same images in
test sets are chosen to compare the reconstruction quality in
Fig. 7. The conditional GAN shows slightly better reconstruction
performance on some typical image features, such as boundary
and brightness changes, than U-net. The advantages are more
obvious in conditional GAN for images with more details, such
as Fashion-MNIST, which also validates our previous analysis.
U-net is proved to have good reconstruction performance for
some simple images with fewer high-frequency features in
MNIST datasets. However, when the images contain more
high-frequency features, the reconstruction performance of
U-net is poor. The discriminator of the conditional GAN ena-
bles the generator to better mine the high-frequency features of
the image, which improves its feature extraction ability. The
conditional GAN provides the possibility for complicated image
reconstruction from speckle patterns.

The number of training datasets is an important parameter
that affects the performance of networks. In order to compare
the performance of the two networks with different numbers
of training datasets, the conditional GAN and U-net are trained

Fig. 5. Reconstruction performances with different output resolutions of the
discriminator in (a) the MNIST experiment and (b) the Fashion-MNIST
experiment.

Fig. 6. Loss for training process of U-net and the conditional GAN in (a) the
MNIST experiment and (b) the Fashion-MNIST experiment.

Fig. 7. Reconstruction results of U-Net and the conditional GAN in (a) the
MNIST experiment and (b) the Fashion-MNIST experiment.
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by different numbers of training sets for 100 epochs, respec-
tively. Figure 8 shows the comparison of the reconstructions
between our network and U-net in the test set evaluated by
PSNR and SSIM. The horizontal axis is the size of different train-
ing sets. Generally, increasing the number of training sets in
both networks can significantly improve the quality of image
reconstruction. With the same number of training sets, the
reconstruction quality of the conditional GAN is better than that
of U-net, which is more obvious with the small training set and
complex images. In other words, the conditional GAN only
requires smaller training sets than U-net to achieve the same
reconstruction quality. It can also be concluded that this condi-
tional GAN has stronger capabilities for feature extraction than
U-net.

4. Conclusion

Considering the structure of the conditional GAN, the generator
is essentially a U-net, while the additional discriminator can
guide the training of the generator to converge faster.
Moreover, the discriminator enables the generator to show bet-
ter ability in discrimination and constraint for both high- and
low-frequency parts of the image to improve the feature extrac-
tion ability of the generator. Therefore, smaller datasets can
work in reconstruction with the conditional GAN. The experi-
mental results show that this conditional GAN could recon-
struct images with fewer training datasets and shows higher
feature extraction capability compared with the conventional
method of U-net. For both MNIST and Fashion-MNIST, hun-
dreds of training images are reduced by using this conditional
GAN in the case of achieving the same accuracy of reconstructed

images. In addition, this conditional GAN also has higher fea-
ture extraction capability because of the discriminator and the
advantage in high-frequency processing. However, the network
only performswell for the samples similar to the training data. In
the future, it is important to use stronger network or transfer
learning methods to improve the generalization ability of
models.
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