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We present a deep learning approach for living cells mitosis classification based on label-free quantitative phase imaging
with transport of intensity equation methods. In the approach, we applied a pretrained deep convolutional neural network
using transfer learning for binary classification of mitosis and non-mitosis. As a validation, we demonstrated the perfor-
mances of the network trained by phase images and intensity images, respectively. The convolutional neural network
trained by phase images achieved an average accuracy of 98.9% on the validation data, which outperforms the average
accuracy 89.6% obtained by the network trained by intensity images. We believe that the quantitative phase microscopy in
combination with deep learning enables researchers to predict the mitotic status of living cells noninvasively and efficiently.
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1. Introduction

Cell morphology provides meaningful information on cell
physiology and has a wide range of applications in the monitor-
ing of cell status during biological processes. The most impor-
tant cell events, such as cell division, significantly change the
properties of a whole cell. For example, during cell division,
an ancestor cell shrinks and becomes circular and then splits into
two daughter cells. Accurate biophysical parameter measure-
ments duringmitosis of adherent cells are particularly necessary,
as cells undergo, both in culture and in tissues, important
changes in morphology[1]. However, mitosis events may often
appear randomly in biological systems and vary depending upon
the cells growth conditions. Long-term monitoring of the cellu-
lar morphological dynamic process is usually demanding for
obtaining cell mitosis videos.
There have been a number of methods for cell mitosis iden-

tification using deep learning combined with optical microscopy
over the past few years[2–7]. Some studies applied deep learning
to mitosis events identification with phase contrast microscopic
images[2–5]. However, the phase contrast images of cells are
blurred with halo artifacts so that the segmentation is incredibly
difficult. A deep convolutional neural network (DCNN) has
been used for semantic segmentation of mitotic cells in histopa-
thological breast cancer images[6]. The staining in histopatho-
logical images ensures more accurate segmentation of cells,

but it would kill the cells. Eulenberg et al. proposed to analyze
cell status using fluorescent microscopic images and deep learn-
ing framework[7]. The fluorescent staining of cells is necessary
before imaging, which possibly influences the cell behavior
and morphology. Most of these studies focus on the identifica-
tion of mitosis events from massive video data and cannot sup-
port subsequent biophysical parameter measurements during
mitosis. Although digital image acquisition systems in a modern
microscope enable us to take automated images, since the mito-
sis events often appear randomly and vary depending upon the
conditions, researchers or computers usually have to trace the
full lifecycle of cells over dozens of hours. Mitosis events only
happen in a few dozen minutes. Apparently, an automatic
and label-free approach that enables accurate mitosis prediction
for living cells is urgently necessary.
As a label-free imaging technique, quantitative phase micros-

copy (QPM) enables rapid acquisition of overall cellular infor-
mation on both the morphology and refractive index for living
single cells[8–10]. Compared with staining and fluorescent
microscopy[11,12], QPM provides extra information on quantita-
tive phase shifts induced by intracellular refractive index distri-
bution. Practically, important biophysical parameters, including
volume and dry mass derived from quantitative phase signal,
have been utilized for cellular dynamics analysis during mitosis
and cell cycle[1,13–15]. Recent studies show that the deep learning
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methods based on QPM have been successfully applied to the
cell classification task, such as assessment of the cell activation
state[16], cancer diagnosis[17], and screening of anthrax
spores[18]. In further combination with deep learning, QPM
has potential in the mitosis classification of live cells.
In this Letter, we present an approach based on QPM and

DCNN to predict mitosis and non-mitosis at the single-cell level.
Here, a through-focus QPM system based on the transport of
intensity equation (TIE) described previously is used for
obtaining the phase images of living cells[19]. Potential mitotic
cells are cropped from the overall phase images and divided
by the experienced biologist into mitosis and non-mitosis based
on morphology variation. Then, the labeled quantitative phase
images of individual mitotic candidates are collected as a dataset
for DCNN training. For comparison, labeled intensity images of
individual mitosis and non-mitosis are also collected for training
DCNN. The DCNN trained by phase images achieves a higher
average accuracy and F1 score than the DCNN trained by inten-
sity images on automated classification of mitosis and non-
mitosis.

2. Materials and Methods

Figure 1 shows the flowchart of phase recovering based on the
through-focus QPM. Here, two out-of-focus images are used,
which are over- and under-focused with the same focal distance
±Δz away from the in-focus plane, respectively. According to
the finite difference, the derivative of the image intensity with
respect to the optical axis can be approximated with the over-
and under-focused images. The in-focus intensity image is com-
puted as the average of the two symmetrically defocused
images[20,21]. Then, based on the calculated in-focus intensity
and intensity derivative, quantitative phase image can be
uniquely determined by solving the TIE under proper boundary
conditions based on fast Fourier transform[22,23].
The QPM system is shown in Fig. 2(a). This experimental

setup is built on an inverted bright-field microscope upgraded
with a flipping imaging module[19]. A single image at the input
of this flipping imaging module can be doubled as two laterally

distributed images on the CCD camera (Imaging Source
SVS16000MFGE, 3280 × 4892, pixel size 7.44 μm, 15 frames/s).
Next, using a 5 μm pinhole as the object, the two laterally sep-
arated images can be fine-tuned as in-focused by translating the
M2 axially to a certain plane. Then, by translating M2 Δz away
from the plane, a pair of in-focus images and defocused images
can be created simultaneously. By properly translating the
microscope stage along the optical axis, ensuring that the sample
is precisely located at the central position between over- and
under-focused planes, two images with defocus distances of
±Δz can be captured.
The QPM system employs Kohler illumination, whose spatial

coherence is represented by coherent parameter S, the ratio of
the numerical aperture of the condenser to that of the objective.
The simulated phase transfer function for various coherent
parameters is shown in Fig. 2(b), and the value for S is maxi-
mized by ∼0.6[24–26]. The size of the condenser aperture has
exactly the opposite effect on the resolution of in-focus and defo-
cused images. Since the QPM system enables us to record two
images in one shot, and the derivative of the image intensity is
better approximated using finite difference of over- and under-
focused images, the condenser aperture is properly adjusted to
set the coherent parameter S around 0.3 in experiment[20].
This system is calibrated using a plano-convex microlens

array (OPTON, MLA-2R250, 250 μm pitch) by comparing
the measured height with the manufactory value to confirm
the validity of this approach. In themeasurement of living osteo-
blastic cell specimens, low cell density covering only 30% to 40%
of the chamber is adopted to avoid cell overlapping and ensure
homogenous background. A 40 × =0.65NA objective is used for
living cell imaging.
Figure 2(c) shows the original lateral-flipped images of living

osteoblastic cells, and Fig. 2(d) gives the phase of the cell marked
in the red box. An area of 5 × 5 pixels in the top-left corner of the
cell [indicated by a white square in Fig. 2(d)] is selected, and theFig. 1. Flowchart of algorithm for QPM based on the TIE.

Fig. 2. (a) Experimental setup. D, diaphragm; BS, beam splitter; RR, retrore-
flector; M2, mirror 2. (b) 2D images of source pattern and corresponding phase
transfer function for different coherence parameters. (c) Original lateral-
flipped images in single shot. (d) Recovered phase map of the cell marked
in the red box in (c). (e) Phase stability measurement during the 150 min
experiment in the white box marked in (d).
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average phase fluctuations in this area are calculated over
150 min. The standard deviation of the graph shown in Fig. 2(e)
is only 0.0128 rad, corresponding to 0.002λ.
Mitosis events may often appear randomly in nature and vary

depending upon the conditions under which the mitosis events
are usually sparsely distributed. Considering that the cell life-
cycle is around 20 h, after being taken outside the clinostat,
the living cells are placed on the microscope stage under mon-
itoring for a whole day[14]. Some cells in the observation window
undergo the representative lifecycle morphology changing proc-
ess. For these cells, the time-lapse phase images during the divi-
sion stage are cropped from the original whole phase images.
As shown in Figs. 3(a)–3(d), the phase images clearly reveal

the cell morphological changes during different phases of mito-
sis over the course of 30 min. At prophase and metaphase, the
mitotic cells retract and round up. At anaphase, the sister chro-
matids are separated and pulled toward the spindle pole, and the
poles of the cell scale out at the same rate simultaneously. At
telophase, the ancestor cell splits into two daughter cells, which
look like the shape ‘8’. In this stage, mitosis is easy to identify by
observing the visual appearance. Compared with the four dis-
tinct stages experienced by mitotic cells, non-mitotic cells only
continue to retract and round up in morphology at a slow speed
over several hours, as shown in Figs. 3(a) and 3(b).
Obviously, it is difficult for researchers to figure out whether

rounding-up cells is in the mitotic events or non-mitotic process
using a single phase image. DCNN, which is capable of discov-
ering effective representations from image data in a self-taught
manner, is further proposed for subsequent automatic identifi-
cation of cell states[27]. The time-lapse phase images of mitotic
cells during prophase, metaphase, and anaphase, together with
the dynamic phase images of non-mitotic cells, are used for the
training of DCNN afterwards.
DCNN is built by modifications of AlexNet, which has been

pretrained usingmillions of high-resolution images in ImageNet
and is able to be fine-tuned to fit our dataset using transfer learn-
ing[27]. The fine-tuned modifications using transfer learning are
as follows[28].

(1) Removal of the last three layers of the original network.
(2) Addition of three new layers at the end of network: fully

connected layer, softmax layer, and classification layer.
(3) The fully added connected layers are set to have two

outputs.

The detailed architecture of DCNN after transfer learning is
illustrated in Fig. 4. The phase image of a single cell is processed
by five convolution layers each convolution layer followed by a
rectified linear unit (ReLU), three 2 × 2 max pooling layers with
stride 2, and two fully connected layers each followed by an
ReLU. At the end of the overall network, a softmax function
is used for binary classification.
The collected potential mitosis dataset contains 40 mitotic

cells and 45 non-mitotic cells. For both mitotic and non-mitotic
cells, 80% of this dataset is used for training, and 20% is used for
validation. Data augmentation techniques are utilized to reduce
overfitting and increase accuracy. The data augmentation gen-
erates virtual images using flipping and rotation in four different

Fig. 3. (a), (b) Representative phase and corresponding intensity images of
mitosis. (c), (d) Representative phase and corresponding intensity images
of non-mitosis.

Fig. 4. Workflow diagram and detailed architecture of DCNN for classification
of mitosis and non-mitosis.

Fig. 5. Learning process of DCNN trained by phase and intensity images,
respectively.
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angles (0°, 90°, 180°, 270°) to help increase the robustness
of DCNN.
To remove the effect of phase information on the perfor-

mance of DCNN, the dataset consisting of intensity images is
used to train DCNN for comparison. As a result, DCNNs are
separately trained by phase images and intensity images, respec-
tively. Training loss, validation loss, training accuracy, and val-
idation accuracy are calculated every 0.2 epoch during the
training process of 50 epochs. The batch size and initial learning
rate are set as 5 and 0.0005, respectively. The data is processed
using MATLAB based on CPU computing, and the training
process of 50 epochs takes 19 h.

3. Results and Discussions

The performance (loss and accuracy) of DCNN trained by phase
images throughout the entire training and validation process is
illustrated in Figs. 5(a) and 5(b). The loss and accuracy in val-
idation start to remain steady after 3 epochs. After 50 epochs, the
network achieves its final accuracy of 100%. Compared with the
performance of DCNN using phase images as input, DCNN
trained by intensity images demonstrates a detrimental effect
on the performance shown in Figs. 5(c) and 5(d). The reduced
validation accuracy and the increased validation loss indicate
that the network trained by intensity images shows an impaired
performance.
Figures 6(a) and 6(b) show the prediction ratio of mitosis and

non-mitosis based on DCNN trained by phase and intensity
images, respectively. As can be seen from Fig. 6(a), DCNN
trained by phase images performs with almost excellent accu-
racy (0% false negative error) on the discrimination between
mitosis and non-mitosis. The prediction results in Fig. 6(b) indi-
cate that an error occurs when DCNN is trained by intensity
images. Some cells from the non-mitosis class are wrongly clas-
sified as mitosis.

To further interpret and visualize the classification perfor-
mance of the two trained DCNNs on single-cell data, a nonlinear
dimension reduction technique, t-distributed stochastic neigh-
bor embedding (t-SNE) is applied to the activation of individual
neurons in the last fully connected layer. Using t-SNE, the input
images at the head of the network are transformed into repre-
sentative spots in a two-dimensional coordinate plane, where
cells with similar features are close to each other, and cells from
different classes spread far away from each other. The t-SNE
visualizations of the two DCNNs are shown in Figs. 6(c) and
6(d). The distinct separation between mitosis and non-mitosis
in Fig. 6(c) indicates optimal representation of DCNN trained
by quantitative phase images.
Figure 7 shows the overall classification performance (accu-

racy, precision, recall, and F1 score) of the twoDCNNs by apply-
ing five-fold cross validation on the dataset. The average
accuracy, precision, recall, and F1 score of the DCNN trained
by phase images are 98.9%, 100%, 94.8%, and 97.4%, respec-
tively. The DCNN trained by intensity images leads to poorer
performance, when the accuracy, precision, recall, and F1 score
of the classification are 89.6%, 72.6%, 100%, and 83.8%, respec-
tively. Earlier publications also reported that machine learning
classifiers trained by phase images outperform the classifiers
trained by intensity images[17,18,29]. Compared with quantitative
phase images reflecting the intracellular refractive index, the
intensity images only offer rough information on cell contour.
From the above results, we reason that the quantitative phase

signal, as an important functional characteristic of cell status, is
capable of discerning the cell mitotic state in combination with
DCNN. Due to the morphological similarities between mitosis
and non-mitosis, the information involved in intensity images is
insufficient for cell status discrimination.
In particular, an important cell biophysical parameter termed

cell dry mass, was previously utilized for various purposes,

Fig. 6. Performance and t-SNE visualization of the DCNN trained by phase and
intensity images, respectively. In t-SNE visualization, number 1 represents
mitosis and number 2 represents non-mitosis.

Fig. 7. Overall classification performance for DCNN trained by phase images,
DCNN with intensity images and random forest trained by dry mass, respec-
tively. (a) Accuracy. (b) Precision. (c) Recall. (d) F1 score.
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including phenotyping dynamics during mitosis and cell
cycle[1,13,14]. The dry mass of a living cell is calculated from sur-
face integral of the phase information, as detailed in earlier
reports[9]. The computed dry mass dataset of mitotic and
non-mitotic cells is used to train a random forest classifier.
Using five-fold cross validation, the overall classification results
are shown in Fig. 7. In this case, the accuracy, precision, recall,
and F1 score are 89.3%, 87.7%, 85.7%, and 86.7%, respectively.
The performance of random forest based on dry mass is com-
parable to the performance of DCNN trained by intensity
images.While in contrast to the DCNN trained by phase images,
the random forest shows a relatively poorer performance, which
means that the quantitative phase distribution plays an impor-
tant part in the classification of mitosis and non-mitosis.
Table 1 further compares the performance of three different

network settings. “AlexNet” is a CNN used for classification of
mitotic cells in histopathological breast cancer images[6]. “CNN
only” is the CNN using phase contrast images as input for iden-
tification of mitosis[2]. This comparison validates that the
DCNN trained by phase images produces more superior results
than the network using histopathological breast cancer images
or phase contrast images for mitosis detection.

4. Conclusion

We have demonstrated the performances of deep learning based
on quantitative phase images and intensity images when dealing
with the classification of mitosis and non-mitosis. The DCNN
generated from quantitative phase images shows better perfor-
mance in binary classification of mitosis and non-mitosis in
comparison with the DCNN generated from intensity images.
Based on these results, it can be inferred that the quantitative
phase images provide a means to identify the subtle differences
and slight variations betweenmitosis and non-mitosis at the sin-
gle-cell level. In further combination with deep learning, QPM
can be developed into a useful tool to improve the performance
on automatic analysis of living cell status noninvasively, such as
cell death, cell cycles, and cells under different experimental
conditions.
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