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We present a velocity-gauge model for the generation of even-order high harmonics, and reveal that the even-order har-
monics originate from the multiple-step transitions among the energy bands in momentum space, while the odd-order
harmonics are mainly from direct transitions. The lower valence band is found vital for the generation of even
harmonics. Relative intensity of even-order harmonics versus the odd orders is calculated and shows a growing trend
as the laser field amplitude increases.
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1. Introduction

High-harmonic generation (HHG) in the gas phase[1–3] has long
been studied as a coherent soft X-ray radiation source with an
extremely short pulse width[4–6]. Its ability to probe the molecu-
lar structure[7,8] and ultrafast electron dynamics[9–11] has also
been proved. Recently, HHG from solid state materials has
attracted much attention[12,13], as it provides an opportunity
to probe electron dynamics in solid states and a potential to pro-
duce attosecond pulses with an enhanced yield[14–24].
Because of the complexity of solid materials, HHG shows a

variety of new phenomena and corresponding mechanisms.
Especially, even-order harmonics are generated by breaking
the inversion symmetry of the system[16,17,25,26]. From a single
crystal of gallium selenide (GaSe), even-order harmonics are
produced with a comparable yield as the odd orders, which
are attributed to the interference between multiple interband
transitions[16]. It has also been proved that the transition dipole
phase (TDP) is a necessity for modeling HHG, with which even-
order harmonics can be produced by only considering a direct
two-band transition[25,27]. Recently, the Berry connection is
found crucial to calculate a physical HHG spectrum that
includes even-order harmonics[28,29]. It is noted that all available
descriptions of even-order harmonic generation rely on the
length gauge, and multiple parameters increase the complexity
to interpret experimental observations.
As an electromagnetic gauge to describe the light field

under dipole approximation, the velocity gauge preserves the

translational symmetry of the crystal and decouples electron
dynamics at each crystal momentum (k) point[30], which can
be advantageous to study laser–solid interaction. In this work,
we study the generation of even-order harmonics by calculating
the high-harmonic spectrum from an inversion-asymmetric
one-dimensional periodic potential. Under the picture of veloc-
ity gauge, we proved that the even-order harmonics only origi-
nate from the multiple-step transition, while the odd orders are
mainly from the direct one. The lower valence band is found cru-
cial to the generation of even-order harmonics, which differs
from the inversion-symmetric case. We find the relative inten-
sity of even versus odd harmonics increases over pump laser
intensity, which results from the growing hole population in
the lower valence band.

2. Method

We model the inversion-asymmetric crystal structure as a one-
dimensional chain constituted by three kinds of atoms equally
spaced [Fig. 1(a)]. The Coulomb potential of each atom is
treated as a localized potential well[31,32]. The total periodic
potential is given by

V�x� =
X
R

X
i=A,B,C

Vi�1� tanh�x − xi,R���1 − tanh�x − xi,R��,

(1)
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in whichVA = 0.6,VB = 0.7, andVC = 0.8 in atomic units (a.u.).
Atomic centers are separated by 1/3 of the lattice constant
a = xi,R − xi,R−1 = 12 a:u. Note that three different atoms in each
lattice are the simplest asymmetric case for equally spaced
atoms. We calculate the Bloch functions as eigenfunctions of
the field-free Hamiltonian, and the energies of the first five
bands (εn,k, n = 1,2,3,4,5) are shown in Fig. 1(b).
Under dipole approximation, the multiple-electron dynamics

of the system is calculated using the semiconductor Bloch equa-
tion (SBE) in the velocity gauge with a phenomenological relax-
ation rate[29]:

∂

∂t
Pn,n 0 �k,t�

= −i�ϵ̃n,k − ϵ̃n 0 ,k − i=T2�Pn,n 0 �k,t�
� iA�t��ρn�k,t� − ρn 0 �k,t��pn,n 0 �k�
− iA�t�

X
m

�Pm,n 0 �k,t�pn,m�k� − Pn,m�k,t�pm,n 0 �k��, (2)

∂

∂t
ρn�k,t� = −ρn�k,t�=T1 − 2A�t�Im

�X
m

Pn,m�k,t�pm,n�k�
�
,

(3)

where pn,n 0 �k� = −ihϕn,kj ∇k jϕn 0 ,ki is the transition matrix
element calculated from Bloch functions, Pn,n 0 �k,t� is the micro-
scopic polarization, ρn�k,t� is the electron population, and ε̃n,k is
the modified band energy, ε̃n,k = εn,k � A�t�pn,n�k�.
In our calculation, the laser pulse has an electric field E�t� =

ELcos4�t=τ� cos�2ωLt� with a wavelength of λL = 2πc=ωL =
4 μm and pulse duration of τ = 63 fs. The relaxation times T1

and T2 are set to be 7 fs and 1.1 fs, respectively[16]. For initial
conditions, we set ρ1�k,0� = ρ2�k,0� = 1, while other ρn�k,0�
and Pn,n 0 �k,0� are all zero [see the Fermi level shown in
Fig. 1(b)][31,33,34].
After solving Eqs. (2) and (3), we calculate the electric current

by

j�t� ∝
X
k,n,n 0

P�
n,n 0 �k,t�pn,n 0 �k� �

X
k,n

ρn�k,t��pn,n�k� � A�t��: (4)

The high-harmonic spectrum is given by

S�ω� ∝ ω2jj�ω�j2: (5)

3. Results and Discussion

The high-harmonic spectrum at the pump laser field amplitude
of EL = 2.2 V=nm is shown in Fig. 2(a). Five bands in total have
been involved in the calculation. The convergence of results in
this spectrum range has been checked for up to 10 bands. The
spectrum contains both odd and even orders. While being gen-
erally weaker than adjacent odd orders, a plateau of even-order
harmonics, ranging from the 6th to 14th order, is clearly shown
in Fig. 2(a). The abrupt increase of harmonic intensity between
the 4th and 6th order coincides with the first Van Hove
singularity point shown by the joint density of states (JDoS)
[Fig. 2(b)]. For orders higher than the 14th, the intensity of
even-order harmonics begins to decrease with increasing order.
Such pattern complies with the interband mechanism[20,35].
To determine the transition path that leads to the generation

of even-order harmonics, we turn off the sequential transition by
setting pn,n 0 = 0 for all jn − n 0j > 1 in the calculation. As a result,
one can see the even-order harmonics disappear completely in
the spectrum (Fig. 3), which indicates that they originate from
the multiple-band mechanism. The spectrum of odd harmonics
also slightly changes in Fig. 3, which implies minor contribu-
tions from sequential transitions as well. The calculation is done

Fig. 1. (a) Periodic potential used for the calculation. Each crystal lattice
includes three different atomic centers, namely, A, B, and C. (b) The corre-
sponding band structure (first five bands). Band indices are shown on the
right. The gray dashed line indicates the Fermi level.

Fig. 2. (a) Calculated high-harmonic spectrum. (b) The JDoS of the system.
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under several laser field strengths (0.8–2.4 V/nm), and the result
stays the same.
It is noted that a direct two-band transition can produce even-

order harmonics in the length gauge, in which it is crucial that
the TDP be included[25,27]. In our calculation, since we have
obtained the Bloch functions, the phase of the transition dipole
is included. But, the spectrum produced by forbidding all
sequential transitions in Fig. 3 does not include even orders.
This is because in the velocity gauge, the two-band transition
with the transition matrix element phase does not contribute
to the even-order harmonics.
To prove the above statement analytically, we reduce Eq. (2)

into a two-band case:

∂

∂t
Pc,v�k,t� = −i�ε̃c,k − ε̃v,k − i=T2�Pc,v�k,t�

� iA�t��1 − ρ�k,t��pc,v�k�: (6)

Note that in velocity-gauge SBE [Eqs. (2), (3), and (6)] the sys-
tem evolution at each k is completely decoupled. Following
Keldysh’s approach[3,36,37], Eq. (6) can be written as

Pc,v�k,t� = i
Z

t

−∞
�1 − ρ�k,t��A�τ�pc,v�k�dτeiSe−

t−τ
T2 , (7)

where S is the dynamical phase, S = −∫ t
τε̃n,kdt

0:
Applying Eq. (4), the corresponding current is

j�t� ∝ i
X
k

p�c,v�k�
Z

t

−∞
�1 − ρ�k,t��A�τ�pc,v�k�dτeiSe−

t−τ
T2 � c:c:

(8)

In Eq. (8), the complex phase of pc,v inside and outside the
integral sign cancels out and does not affect the result current.
Following a similar routine, one can prove that the current gen-
erated by band population ρn�k,t� is not affected by the phase of
pc,v either. Since, in such one-dimensional two-band systems,

the asymmetry of the material is encoded in the phase of pc,v
(which is linked to TDP by a phase shift of π=2)[25], the irrel-
evance of the phase of pc,v means the asymmetry of the material
is omitted in the high-harmonic current, and thus no even-order
harmonics can be generated.
We want to clarify that our conclusion does not conflict that

of Ref. [25], which finds that the TDP dominates the even-order
harmonic generation process in ZnO, because the electromag-
netic gauges we use are different. Under electromagnetic-gauge
transformation, the corresponding electron transition path is
known to be different[38].
As the generation of even-order harmonics results from

sequential transitions, we further specify the role of the individ-
ual band. In the inversion-symmetric system with a similar band
structure[33], it has been found that the lower valence band plays
a negligible role in HHG. We test the applicability of the finding
in our system by forbidding all transitions involving band 1 and
compare the spectrum with the real one (Fig. 4). The result
shows that when band 1 is excluded it does not affect much
of the odd harmonics, which agrees with the previous finding.
Meanwhile, nearly most of the even-order harmonics disap-
peared, which distinctively differs from the symmetric case.
We have checked the result under several laser field strengths
(0.8–2.4 V/nm). The key role of band 1 in even-order harmonic
generation can be understood, as it includes the most bounded
states of the system, and thus is sensitive to the asymmetry of the
periodic potential.
We then calculate the laser field dependence of the yield of

even-order harmonics on the odd orders. The result is shown
in Fig. 5(a). At the field strength of EL = 1.0 V=nm, the even-
order harmonics are weaker than adjacent odd harmonics by
two to three orders of magnitude. As the laser field increases
to EL = 2.4 V=nm, the yield of the 12th and 14th becomes of
the same order of magnitude as adjacent odd orders. To show
the dependence more clearly, we calculate the ratio between the
even-order harmonics and their neighboring two odd orders,
I2 s=�I2 s�1I2 s−1�0.5. As shown in Fig. 5(b), the calculated ratio
has an increasing trend and minor oscillation.

Fig. 3. Comparison between the harmonic spectra obtained by allowing (blue
line) and forbidding (red line) multiple-band transitions. Initial electron state
and laser parameters are the same as in Fig. 2(a).

Fig. 4. Comparison of high-harmonic spectra calculated with (blue line) and
without (pink line) transitions involving band 1.
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Our analysis above shows that the even-order harmonics are
generated by sequential transitions involving band 1, while the
odd orders are generated mostly from direct transitions. Next,
we will show how the two processes depend differently on the
increase of the laser field. A schematic diagram is shown in
Fig. 6. For the odd harmonics, the harmonic intensity is deter-
mined by the probability of direct transition m → n, Om→n,
while for the even-order harmonics, by the probability of
sequential transition 1 → m → n, O1→m→n. Note that the only
difference of the two transitions is the involvement of band 1.
Under low laser amplitude, band 1 is hardly involved with being
tightly bounded. Under higher laser amplitude, the involvement
of band 1 is increased, which gives rise to the ratio between the
probabilities of the two transitions O1→m→n=Om→n. This
explains the increasing trend of relative yield of even-order har-
monics. Since the yield of high harmonics also depends on

dynamical phase[37], which changes as well with pump intensity,
the relative intensity of even-order harmonics as a function of
laser field is not monotonous, as is shown in Fig. 5(b). But, as
we average the ratio of different even orders, the increasing trend
is clear.
We check the above explanation by comparing the hole pop-

ulation in band 1, 1 − ρ1, with averaged even/odd ratios. As
shown in Fig. 7, the two curves roughly coincide with one
another, which supports the validity of our explanation.
As the phenomenological relaxation rate in Eqs. (2) and (3)

can suppress some electron trajectories for HHG[39], the
numerical results are quantitatively dependent on the relaxation
rate used in our calculation. But, as even and odd harmonics
mainly come from different electron transition paths, one can
imagine that their yield should depend differently on laser
parameters. Though our analysis is based on velocity gauge, con-
sidering gauge freedom, analysis including the TDP and Berry
connection in length gauge[25,28,29] should lead to the same
result. In real systems, the second harmonics generated from
the material front surface can also drive the electron and lead
to the generation of even-order harmonics[26]. This might be
the reason that in some experimental results even and odd har-
monics have similar laser intensity dependence[16,40]. It has been
shown that with reflection geometry such nonlinear propagation
effects can be suppressed[41].

4. Conclusion

In conclusion, we calculated the high-harmonics spectra from
an inversion-asymmetric one-dimensional periodic potential.
The result is understood in velocity gauge, where the even-order
harmonics contribute solely to sequential transitions, and
the odd harmonics mostly to direct transitions. The vital role
of the lower valence band in even-order harmonic generation
is found in our result. As the involvement of the lower valence
band requires high laser intensity, the yield of even-order har-
monics increases more rapidly with the laser field than

Fig. 5. Laser field dependence of the high harmonics. (a) Calculated high-har-
monic spectra between the 5th and 18th harmonic order. (b) The even/odd
ratio of the 6th–14th harmonics. Red solid line shows the averaged ratio.

Fig. 6. Schematic diagram of the (a) direct transition and (b) sequential tran-
sition processes. Number and letters on the right of (a) are band indices.

Fig. 7. Comparison between the hole population in band 1 and the averaged
ratio between even- and odd-order harmonics as functions of laser field
strength.
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odd-order harmonics. The difference between the laser intensity
dependence of even and adjacent odd harmonics should be in-
dependent of gauge and can be examined by experiments free
from propagation effects. Our work offers an alternative per-
spective to study the interplay between the intense laser field
and inversion-asymmetric solids. As even-order harmonics are
linked only to sequential transition processes, our work implies
a way to resolve the electron motion using high-harmonic
spectroscopy.
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