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After the three-dimensional self-affine fractal random surface simulation, we use the optical scattering theory to calculate
the deep Fresnel region speckle (DFRS) under consideration of the more strict shadowing effect. The evolution of DFRS with
the scattering distance and the intensity probability distribution are studied. It is found that the morphology of the scatterer
has an antisymmetric relationship with the intensity distribution of DFRS, and the effect of micro-lenses on the scattering
surface causes the intensity probability distribution of DFRS to deviate from the Gaussian speckle in the high light intensity
area.
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1. Introduction

As is well understood, the random distribution of light intensity
formed in space after the coherent light wave is scattered by a
rough surface or a random medium is called speckle[1,2].
Generally speaking, the characteristics of speckle are determined
by the rough surface, random medium (scatterer), and the opti-
cal system that the scattered light waves pass by. The influence of
scattering distance on speckle is also very important, generally
divided into far-field speckle and near-field speckle. The far-field
speckle is further divided into the Fraunhofer diffraction region
and the Fresnel diffraction region, both of which belong to
Gaussian speckle. Near-field speckle is generally considered to
be the light intensity distribution within one wavelength from
the surface of the scatterer. This area contains rich sub-micron
optical information that cannot be detected by conventional
optical methods. The deep Fresnel region is generally under-
stood to be between the far field and the near field, approxi-
mately distributed between one to dozens of wavelengths. The
speckle in this area also contains a lot of information on the
random surface[3–5].
For deep Fresnel region speckle (DFRS), due to the extremely

close distance between the random surface and the observation
surface, when the scattered light propagates from the random
surface to the observation surface, it may be blocked by the fluc-
tuations of the adjacent micro-surface, resulting in some scat-
tered light not being able to reach the observation surface.
This phenomenon is called the shadowing effect[6–8]. The influ-
ence range of the shadowing effect will be affected by the

scattering distance and the surface roughness. Most early studies
used optical scattering theory to directly calculate the contribu-
tion of each point on the random surface to the observation sur-
face, and they calculated the speckle field using the principle of
light wave superposition[9–13] without considering the shadow-
ing effect.
The recent study of shadowing effect is contributed by Sun

et al.[8]. He defined the three-dimensional (3D) attenuation fac-
tor on the real surface, derived four functions that affect the 3D
attenuation factor and performed calculations, discussed the
effects of masking on the illumination, and defined a boundary
where the shadowing or masking occurs. However, these theo-
ries are only used to calculate the attenuation of reflection, and
there is not a proper explanation for the shadowing effect of the
scattering in the deep Fresnel region. In this paper, we firstly
simulate the generation of a 3D self-affine fractal random sur-
face h�x,y�. We improve the method of Sun et al. by using the
light scattering theory and Kirchhoff approximation[14] to sim-
ulate DFRS at different scattering distances under the premise of
considering the shadowing effect. Because the simulation con-
siders the effect of all surfaces around the observation point on
the shadowing effect, the simulation of DFRS is more accurate.
Our work makes the following contributions.

(1) The speckle evolution within one wavelength from the
highest point of the random surface is studied.

(2) The relationship between speckle within one wavelength
from the highest point of the random surface and the sur-
face morphology is studied.
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(3) The probability distribution of speckle intensity is studied
and compared with the experimental measurement
results.

2. Theory

The height of the random surface is a function of position coor-
dinates, denoted as h�x0,y0�. We use the following Fourier trans-
form as the expression for generating the complex height
function hc�x0,y0�:

hc�x0,y0� = hr�x0,y0� � jhi�x0,y0�

=
���
2

p ZZ �∞

−∞
p�x01,y01�η�x01,y01�

× exp�−j2π�xx0 � y01y0��dx01dy01, (1)

p�x01,y01� = �P�x01,y01��1=2, (2)

P�x01,y01� =
ZZ �∞

−∞
ω2 expf−��x0 � y0�=ξ�2αg

× exp�j2π�x01x0 � y01y0��dx0dy0, (3)

where p�x01,y01�[15] represents the aperture function; ξ is the
correlation length of the surface, which characterizes the hori-
zontal and vertical correlation range of the random surface; ω
denotes the mean square deviation roughness of the surface
(roughness for short), which describes the oscillation amplitude
of the surface height deviating from the average height of the
surface; α �0 < α ≤ 1� is the fractal index of the surface, which
describes the local roughness of the surface. The smaller the
value of α, the rougher the local surface. hr�x0,y0� and
hi�x0,y0� are the real and imaginary parts of hc�x0,y0�, respec-
tively, and η�x01,y01� is the real variable white noise process with
a mean of zero. Due to the characteristics of the speckle field, we
can see that both hr�x0,y0� and hi�x0,y0� are Gaussian random
processes with an average value of zero; both hr�x0,y0� and
hi�x0,y0� can be used as the numerical distribution function
of the height of the self-affine fractal surface.
Figure 1 is the two surfaces we generated: Fig. 1(a) is a random

surface with α of 1.0, ξ of 0.5 μm, andω of 0.2 μm, and Fig. 1(b) is
a random surface with α of 1.0, ξ of 0.5 μm, and ω of 0.3 μm.

Each surface is generated from 1000 × 1000 data points with
a spacing of 10 nm between points. It can be seen in Figs. 1(a)
and 1(b) that the amplitude of the random surface with ω of
0.3 μm has a larger fluctuation range than the surface with ω
of 0.2 μm, and there is no local small-scale fluctuation on both
surfaces. In this paper, only the speckle properties of these two
surfaces are discussed.
In order to understand the shadowing effect more intuitively,

only the plane view is shown here. Figure 2 shows the process of
light waves scattered by the random scattering surface propagat-
ing upward to the observation surface. Each scattered light leav-
ing the surface is treated as a point light source for spherical
wave propagation. After the light beam L1 scatters through
the surface, it will begin to propagate in the form of a spherical
wave from pointN. Due to the blocking of the second peak to the
left of point N and the first peak to the right, the light can only
illuminate R-S area on the observation surface. In the meantime,
the left side of the point R and the right side of the point S are
blocked. Similarly, the light beam L2 can only illuminate the P-Q
area after surface scattering. Due to the random fluctuation of
the surface, it is impossible to solve the shadowing of different
points with the unified standard. It can only be analyzed point
by point.
It can be seen that whether the transmitted light can be com-

pletely blocked depends on whether it passes through the convex
micro-surface on its propagation path. Because of this, we intro-
duced two slope functions k1 and k2 in the simulation process. k1
is the slope of the line between the starting point of the trans-
mitted light on the scattering surface and the possible observa-
tion point, and k2 is the maximum slope of the line between the
starting point of the scattered light and the scattered surface
point, which is from the starting point of the scattered light
to the corresponding observation point. Obviously, when
k1 > k2, all of the points on the scattering surface are under
the scattered light, so the scattered light will not be blocked.
When k1 ≤ k2, the scattered light will pass through the convex
part of the scattering surface in a certain area, so the light is
blocked from reaching the observation surface. Figure 3 shows
the shadowing judgment process of scattered light, where E and

Fig. 1. (a) Random surface with α of 1.0, ξ of 0.5 μm, and ω of 0.2 μm; (b) ran-
dom surface with α of 1.0, ξ of 0.5 μm, and ω of 0.3 μm. Fig. 2. Shadowing effect of the surface.
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F are two possible points of scattered light propagating from the
point O (located on the random surface) to the observation sur-
face. For point E, its corresponding k1 = y1=x1, k2 = y2=x2;
because k1 > k2, the light can propagate to point E. For point
F, its corresponding k1 = y3=x3, k2 = y4=x4; because k1 < k2,
the light is blocked by the surface and cannot reach point F,
which does not contribute to the light field at this point. In
the calculation process, we do not consider the effect of secon-
dary scattering or multiple scattering after the light is blocked.
The scattering field calculated in this way is closer to the actual
scattering process than without considering the shadowing
effect. If it is used to calculate DFRS, the result should be more
accurate than the traditional one without considering the shad-
owing effect. The calculation process of DFRS under the shad-
owing effect is discussed below.
The generation process of DFRS is shown in Fig. 4. A mono-

chromatic incident beam with the amplitude of U0 and wave-
length of λ illuminates perpendicularly on a random
scattering surface placed on the object surface. The unit normal
vector at any point on the scattering surface at A0�x0,y0� is rep-
resented by n

⇀
, and the height of the point is h�x0,y0� (shown in

the enlarged section view). The distance between the observation
surface A�x,y� located in the deep Fresnel region and the bottom
of the scattering surface (at z = 0) is z 0. According to Kirchhoff’s
approximation, the complex amplitude of the scattered light

field at A�x,y� on the observation surface can be expressed as
follows:

U�x,y� = 1
4π

ZZ �
G
∂U0�x0,y0�

∂n
− U0�x0,y0�

∂G
∂n

�
dS0, (4)

U0�x0,y0� = exp�jk�m − 1�h�x0,y0��, (5)

G =
exp�jkr�

r
, (6)

r = f�x − x0�2 � �y − y0�2 � �z 0 − h�x0,y0�2�g1=2, (7)

where G represents Green’s function, S0 is a random scattering
surface, m is the refractive index of the medium on the random
surface, k = 2π=λ is the wave vector, and r is the distance
between the scattering point and the field point A�x,y� on the
random surface.
Because the normal derivative satisfies the following

relationship:

∂

∂n
= �n × ∇� = 1

γ

�
−
∂h�x0,y0�

∂x0

∂

∂x0
−
∂h�x0,y0�

∂y0

∂

∂y0
� ∂

∂z

�
,

(8)

γ =
�
1�

�
∂h�x0,y0�

∂x0

�
2
�

�
∂h�x0,y0�

∂y0

�
2
�
1=2

, (9)

therefore, Eq. (4) can be written as

U�x,y� = 1
4π

ZZ
dS0

�
G
∂U0�x0,y0�

∂n
− U0�x0,y0�

∂G
∂n

�

=
1
4π

ZZ
dS0 expfjk��m − 1�h�x0,y0� � r�g

×
�
jk�m − 1�γ

r
−
�
jk −

1
r

�
χ

r2

�
, (10)

χ = h�x0,y0� − z 0 − �x0 − x� ∂h�x0,y0�
∂x0

− �y0 − y� ∂h�x0,y0�
∂y0

:

(11)

If the shadowing effect is not considered, then Eq. (10) needs
to integrate the entire scattering surface without judgment,
which obviously does not conform to the actual scattering proc-
ess. Therefore, before integration, we first determine whether the
light is blocked according to the size of the two slopes k1 and
k2, and only take the unblocked scattering points that satisfy
k1 > k2 for integration. If k1 < k2, then we set the light wave
contribution of the scattering point to zero directly. Obviously,
the rougher the random surface and the closer the observation
surface to the scattering surface, the greater the chance of the
light wave being blocked.
Finally, we use the formula I�x,y� = U�x,y� · U*�x,y� to deter-

mine the light intensity distribution of the speckle field.

Fig. 3. Use slope to judge the shadowing effect.

Fig. 4. Generation process of DFRS.
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3. Analysis and Discussion

Based on the above theory, speckles between z = λ=10 and z = λ
from the highest point of the random surfaces have been gener-
ated, with a wavelength of 632.8 nm. Considering the random
surface height fluctuations, such as the roughness of 0.2 μm
and 0.3 μm, the maximum height of the surface is 0.5678 μm
and 1.0228 μm, respectively. Therefore, the distance between
the observation surface and the scattering surface is completely
located in the deep Fresnel region. Figure 5 shows some speckles
generated at different z: for the first row of the scattering surface
α = 1, ξ = 0.5 μm, ω = 0.2 μm, for the second row of the corre-
sponding scattering surface α = 1, ξ = 0.5 μm,ω = 0.3 μm, and z
gradually increases from left to right.
The evolutionary trend of the speckle with z changing in Fig. 5

can be clearly seen; when z is smaller, the speckle patterns are
smaller, the distribution of bright spots is more uniform, and
the speckle contrast is smaller. This is because the fluctuation
of the surface is lower on the surface with less roughness, which
makes the superposition of light waves insufficient. As a result,
the bright spots in the speckle field are not too bright, the dark
spots are not very dark, and the speckle contrast is relatively
small. If the roughness is increased, the surface has a higher
range of fluctuations, and different peaks and valleys have great
differences in light scattering and shadowing effects. For exam-
ple, high peaks and deep valleys are more helpful for scattering,
resulting in some bright spots becoming brighter; some dark
spots will also be darker, and their contrast is significantly
increased. By using C = ��< I2 > − < I >2�= < I >2 �1=2 to
calculate the contrast of speckle, we find that with the increase
of the scattering distance, the speckle field alternates between
light and dark spots, and the speckle contrast is gradually
increased. For instance, when z gradually increases from λ=10
to λ, the speckle contrast of ω= 0.2 μm gradually increases from
0.9564 to 1.1601, reaching a maximum of 1.5598; while the
speckle contrast of ω = 0.3 μm gradually increases from 1.1711
to 1.2484, the maximum reaches 1.4208. This is because the dis-
tribution of DFRS is strongly affected by surface fluctuations. If
the peaks and valleys of the surface are regarded as micro convex
lenses (Ls) and micro concave Ls[16], respectively, there will not
be bright spots that are too strong; when the roughness is small,
and the distance between the observation surface and the scat-
tering surface is less than the focus of these “Ls”, the speckle

contrast is less than 1.0. As the distance increases to the value
range of these foci, the intensity of some bright spots suddenly
increases, resulting in the speckle contrast being greater than 1.0.
The greater the number of “micro-Ls” whose foci are closer to
the distance, the greater the contrast is. If the roughness is rel-
atively large, and the surface has a greater fluctuation range, the
minimum distance from the observation surface is roughly dis-
tributed within the focus of the “micro-L” on the surface, result-
ing in speckle contrasts greater than 1.0.
The light intensity probability density function is also one of

the important parameters to describe speckle. For Gaussian
speckle, it is a negative exponential function:

PI�I� =
1

< I >
exp

�
−

I
< I >

�
, (12)

where < I > is the average value of the speckle intensity. In
order to facilitate the comparison between different speckle
fields, the above formula is multiplied by < I > to become
the normalized probability distribution function P(I), that is

P�I� = exp

�
−

I
< I >

�
: (13)

In the experiment, we used a microscopic imaging system (as
shown in Fig. 6) to measure DFRS. The linearly polarized light
generated by the He–Ne laser illuminates a random surface sam-
ple placed on a two-dimensional nano mobile platform (NMP)
vertically, using a microscope objective (MO, 50×, numerical
aperture of 0.75) and a focal length convex L (focal length of
12 cm) to enlarge the speckle field close to the random surface
(ω = 0.48 μm, ξ = 4.14 μm, α = 0.65). The enlarged image is
recorded by a back-illuminated scientific complementary
metal–oxide–semiconductor (s-CMOS) camera (Dhyana
400BSI V2.0, number of pixels 2048 × 2040, pixel size
6.5 μm × 6.5 μm).
DFRS is more affected by the fluctuation of the scattering sur-

face and is no longer Gaussian speckle. Figure 7 shows the nor-
malized probability distribution of intensity about the Gaussian
speckle, experimentally measured speckle, and DFRS, which is
produced by a random surface with a roughness of 0.3 μm at
different z values. It can be seen that the probability distribution
of the intensity of DFRS is significantly different from the
Gaussian speckle. The light intensity probability distribution
of DFRS is lower than that of Gaussian speckle in the area with
lower light intensity, and it increases significantly near the maxi-
mum light intensity. This is because, in the deep Fresnel region,
scattering and superposition are insufficient, and there are very
few points of fully destructive interference and destructive

Fig. 5. DFRS at different scattering distances. Fig. 6. DFRS measurement system.
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interference, so the area with light intensity close to zero is less
than Gaussian speckle. Due to the “micro-L” effect of the fluc-
tuation of the random surface, the Fresnel deep area observation
surface may coincide with the focal plane of some “micro-Ls”, so
varying amounts of light intensity of extremely strong points are
generated. This results in a high light intensity area, and the
probability distribution of DFRS is usually higher than that of
Gaussian speckle. Of course, if the observation surface does not
coincide with any focal plane, due to insufficient scattering and
superposition, the probability of high light intensity is lower (as
shown in the case of z = λ=10 in Fig. 7). It can be seen that the
experimental curve in the area with a high light intensity is in
good agreement with the simulation, while the area with a
low-light intensity is obviously inconsistent with the simulation,
and the probability increases. This may be due to the influence of
camera noise, and some low-value noise signals will appear in
the measurement of the speckle field. In addition, the numerical
aperture of the MO also limits the range of the recorded
light wave.
We also found that the probability distribution of DFRS

intensity is also related to the surface roughness. Under the same
z, the greater the surface roughness, the greater the proportion of
bright spots is in the intensity probability distribution. This is
because the greater the roughness of the surface and the greater
the fluctuation of the surface, the greater the proportion of
micro-Ls that form a smaller focal length, which causes more
light to converge on the observation surface to form more
extreme bright spots.
Since DFRS contains a lot of information on the random sur-

face, we might as well explore the relationship between the mor-
phology of the scattering surface and the speckle. As the
distribution of speckle at different scattering distances is very
different, after comparison, we found that at some specific dis-
tances the intensity distribution of DFRS is very similar to the
morphology of its scattering surface, and the greater the rough-
ness, the farther the specific scattering distance.

Figure 8 shows comparison between the scattering surface
with different roughnesses (ω = 0.2 μm and ω = 0.3 μm) and
the intensity distribution of the speckle it generates. Among
them, Figs. 8(a) and 8(c) are the height distribution of the scat-
tering surface with roughnesses of 0.2 μm and 0.3 μm. The
darker area indicates the lower surface height, while the whiter
area indicates the higher surface height. Figures 8(b) and 8(d)
are the speckle intensity distribution at z = λ=2 and z = 3λ=5.
The comparison shows that the bright spots in the speckle field
correspond to the valley areas on the scattering surface, and the
brighter the bright spots, the lower the height. The dark spots
correspond to the peak at the surface, so the darker the dark
spots, the higher the height. Considering the full superposition
of light waves in the edge area of the speckle field and taking into
account the speed of calculation, this paper uses a scattering sur-
face with a size of 10 μm × 10 μm to calculate the coaxial
speckle-field area with a size of 4 μm × 4 μm. For larger speckle
areas, it is necessary to increase the scattering area appropriately.
Moreover, the shape of the speckle is also similar to the height
distribution of the corresponding area on the scattering surface.
As the roughness increases, the fluctuation of the surface
becomes larger, as a result the position of speckle similar to
the surface appearance will be farther; meanwhile, the similarity
is relatively reduced. So, DFRS can fully characterize the mor-
phology of the random scattering surface, which can be used
to characterize random surface parameters and detect surface
defects. This is our next research content.

4. Conclusions

In this paper, the characteristics of DFRS after considering the
shadowing effect are studied through simulation. The analysis
believes that this is closer to the real scattering superposition
process than the traditional one without considering the

Fig. 7. Intensity probability distributions of Gaussian speckle, experimentally
measured speckle, and DFRSs, which are generated on surfaces with a rough-
ness of 0.3 μm at different scattering distances.

Fig. 8. (a) and (c) are random surface height fluctuations with roughness of
0.2 μm and 0.3 μm, respectively. (b) and (d) are the speckle intensity distri-
bution at z = λ=2 and z = 3λ=5.
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shadowing effect. The generation and evolution of DFRS are
explored. The characteristics of the probability distribution of
intensity and the principle of the scattering surface micro-L
are analyzed, so the probability distribution at high intensity
is significantly higher than that of Gaussian speckle. In the
experiment, the micro imaging system was used to detect
Fresnel deep speckles, and then the correctness of the theoretical
analysis was verified. The antisymmetric relationship of the
speckle intensity distribution with the surface morphology is
discovered. It is found that the peak of the surface corresponds
to the dark spot of the speckle, and the valley of the surface cor-
responds to the bright spot of the speckle. Themethods and con-
clusions described in this paper provide the possibility to
improve the surface calibration method.
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