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The influence of the sparsity of random speckle illumination on traditional ghost imaging (GI) and GI via sparsity constraint
(GISC) in a noise environment is investigated. The experiments demonstrate that both GI and GISC obtain their best imaging
quality when the sparsity of random speckle illumination is 0.5, which is also explained by some parameters such as detec-
tion of the signal to noise ratio and mutual coherence of the measurement matrix.
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1. Introduction

Ghost imaging (GI), as a novel imaging technique, can non-
locally image an unknown object by correlating the reference
light field and the reflected (or transmitted) light field from
the object[1–8]. Up to now, the speckle patterns illuminating onto
the object have two types. One is orthogonal patterns, such as
Hadamard and sinusoid coded patterns, which can obtain an
N-pixel high fidelity image with N measurements[9–11].
However, because orthogonal patterns are very sensitive to
noise, it can hardly be adopted in applications with scattering
and atmosphere disturbance[12–15]. The other is random pat-
terns, which can obtain high quality images in a noise environ-
ment when the measurement number M is much greater than
the image’s pixel numberN[13–17]. Thus, random pattern illumi-
nations are exploited for the investigation of GI lidar, imaging in
scattering media where the detection noise is inevitable[14–17].
Recently, the sparsity constraint of the object is introduced in
the image reconstruction progress, andGI via sparsity constraint
(GISC) has demonstrated experimentally that an image with
high quality can be reconstructed with the measurement even
beyond the Nyquist limit[18]. Even super-resolution can also be
obtained by GISC[19]. However, GISC methods are strongly
related with the object’s sparsity. Random 0/1 speckle pattern
has been widely used in computational GI because of high
modulation speed for a digital micro-mirror device (DMD)
and high contrast in comparison with pseudo-thermal light

speckle patterns[20,21]. Different from traditional imaging, the
property of the speckle pattern has a great effect on both GI
and GISC[22], but there is little investigation on the relationship
between the sparsity of the random 0/1 speckle pattern and the
imaging quality in the noise environment. In 2018, Zeng’s group
experimentally studied the sparsity of the random 0/1 speckle
pattern on GI at low light levels and demonstrated that GI with
the best quality is achieved at a very low sparsity for the speckle
pattern[23]. Different from the case of low light, the detection
noise in the strong light does not obey Poisson distribution,
and thus the relationship between the sparsity of the random
speckle pattern and the quality of GI will be different. In this
paper, we experimentally demonstrate the influence of the spar-
sity of random patterns on GI in a noise environment based on
GI and GISC. The differences of the influence mechanism on GI
and GISC are also discussed.

2. Model and Theory

To investigate the influence of the sparsity of speckle patterns on
the quality of GI, the experimental system is established and
shown in Fig. 1. The system consists of two parts: signal light
path and noise light path. In the signal light path, thermal light
emitted from a green naked bulk LED (Thorlabs, M530L3) is
collimated by a short focal length lens fc with focal length of
50 mm and diameter of 25.4 mm to make the DMD window
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fully illuminated. A stationary ground glass disk and the adja-
cent Kohler illumination system consisting of two lenses, with
focal lengths of 150 mm and 100mm, are used to generate a uni-
form illumination on the DMD. By combining each set of 8 × 8
pixels into a single resolution cell, 512 × 512 pixels from the
center of the DMD are chosen to produce a 64 × 64 pattern
Is64×64, where each resolution element takes the value of 0 or
1, and s denotes the sth pattern.
The patterns on the DMD are imaged to the object plane by a

commercial lens (Cannon, EF-s 55-250). A stop placed in front
of the commercial lens is utilized to control the illumination
energy. The object is a transmissive target consisting of two let-
ters ‘GI’ and with 25 mm distance from the commercial lens.
After passing through the object, the signal light is imaged to
a bucket detector by f3 with focal length 100 mm through a
4f system. In the noise light path, pseudothermal light generated
by a 532 nm continuous laser and a rotary ground glass passes
through a Kohler system (consisting of f 4 and f5, the focal
lengths are 25 mm and 100 mm, respectively) and enters the
receiving system after the beam splitter (BS). A pair of polarizers
(P1, P2) is placed between the laser and rotary ground glass to
control the power of the noise light. It should be pointed out that
the diameter of the noise light emitted from the laser is 1.5 mm,
and the distance between f4 and the rotary ground glass is
150 mm. Lens f 5 expands two times the speckles on f4 and
images them onto the bucket detector.
The patterns used in this work are drawn from random

Bernoulli distribution B�0,1�. For the k-sparse patterns, there
are k elements, whose values are one, and the other elements
are zero. The sparsity of the pattern is defined as

β =
k
N
, �1�

where N is the number of elements in each pattern. and
N =m × n. Because k-sparse patterns are pre-loaded by the
DMD, there is no reference path.
In the framework of GI, the transmissionOGI of the object can

be reconstructed by computing the intensity fluctuation corre-
lation between the intensity distribution of the reference

patterns Is64×64 and the bucket signal intensities Bs recorded
by the bucket detector:

OGI =
1
K

XK

s=1

�Is − hIsi��Bs − hBsi�, (2)

where K is the total measurement number and stays unchanged
throughout the GI experiment, h•i stands for ensemble averag-
ing, and hIsi = 1

K

P
K
s=1 I

s represents the ensemble average of Is.
Bs = α

RR
IsO�x,y�dxdy� ns, α is a factor, which takes into

account the loss in the signal light path, O�x,y� is the transmis-
sion function of the object, and ns denotes the noise introduced
to the bucket detector by the noise light path. Bs can be equiv-
alently expressed as Bs = α

RR
Is�O�x,y� � ε�x,y��dxdy, where

α
RR

Isε�x,y�dxdy = ns. It needs pointing out that ε�x,y� is a phe-
nomenological representation of the noise term ns on the tar-
get plane.
After some derivation following Ref. [22], Eq. (2) can be

expressed in a form of matrix

OGI =
α

K
MC�T � ε�, (3)

whereMC is the matrix that measures the properties of reference
patterns Isr , and

MC = �A − IhAi�T�A − IhAi�: (4)

Here, A denotes the measurement matrix, and each row of A
is reshaped from Is�m,n�, which makes A a K × N matrix. I is a
K × N matrix whose elements are all 1. T is the ground truth of
the object. ε denotes the noise introduced to the bucket detector,
and ε is reshaped from ε�x,y�. It needs to be noted thatMC is the
Gram matrix of the zero mean matrix �A − IhAi�. It is obvious
that the more the matrixMC is similar to an identity matrix, the
better the imaging quality for measurement matrix A is.
Therefore, following the work of Ref. [22], grayscale fidelity γ
is introduced to evaluate the character of measuring matrix:

γ =
N�

P
MC�i,i�≠0 �MC�i,i� − 1�2 , �5�

where N� denotes the total number of nonzero diagonal ele-
ments of MC . When the diagonal element is zero, the image
information of the corresponding pixel is lost. From Eq. (3),
A alone cannot evaluate the imaging quality of GI, and the noise
term that exists in the bucket signal should be considered.
For the GISC method, the gradient projection for sparse

reconstruction algorithm GISC is used[24]. The transmission
O�x,y� of the object can be reconstructed by solving the optimi-
zation program,

OGISC = jO 0 j, which minimizes∶
1
2
kY − AO

0 k22 � τkO 0 k1,
�6�

Fig. 1. Experimental setup of the influence of the sparsity of random speckle
illumination on GI.
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where O
0
denotes the retrieved image, τ denotes a non-negative

parameter, k•k2 denotes the l2 norm, k•k1 denotes the l1-norm,
and Y denotes the bucket signal.
In the theory of GISC, themutual coherence of columns of the

measurement matrix is recognized as an important index to
evaluate the reconstruction quality of the measurement matrix:

μ =max
i≠j

jhAi,Ajij
kAik2kAjk2

, �7�

where hx,yi denotes the inner product of the vectors x and y, and
Ai is the ith column of the matrix A.

3. Experimental Results

To investigate the imaging performance of GI and GISC under
different sparsity of patterns with different noise levels, the con-
crete parameters in the experiments are set as follows: the object
size is 6 mm, and the minimum width of the object is about
1 mm. The DMD exposure time is 40 ms, and the bucket detec-
tor exposure time is set as 80 μs. The noise light power after two
polarizers is selected to be 0 mW, 0.1 mW, 0.6 mW, and 3 mW.
The sparsity of patterns is {1, 64, 512, 2048, 3584, 4032, 4095}/
4096. The measurement number for GI is a full sampling num-
ber at 4096, while it is 3000 for GISC to examine the compressive
sampling of GISC.
The experimental results are shown in Fig. 2. It shows that

imaging performances of GI and GISC improve as the sparsity
of patterns approaches 0.5. When sparsity β exceeds 0.5, the im-
aging quality for both GI and GISC decreases with the increase
of β. GISC is better than GI when the noise is not heavy.

However, GISC is worse than GI when the noise is heavy.
The phenomenon can be explained by Eq. (5) in Ref. [25],
and GISC is more sensitive to noise compared with GI. From
Figs. 2(a)–2(c), it indicates that the imaging quality of GI will
not improve much when the sparsity of matrix A increases,
which means that the sparser source still results in satisfying im-
aging quality. This may lead to a simpler, faster, and cheaper GI
system, especially in some waveband in which the independent
random modulated element is difficult to manufacture.
To evaluate the quality of reconstructed images, the structural

similarity (SSIM) index is introduced[26], which is more suitable
for the human eye compared with the peak SNR in this case.
Assuming themeasured object isX, and the reconstructed image
is Y , the SSIM index of the two images can be determined:

SSIM�X,Y� = �2μXμY � c1��2σXY � c2�
�μ2X � μ2Y � c1��σ2X � σ2Y � c2�

, (8)

where μX is the mean value of X, μY is the mean value of Y , σX is
the variance ofX, σY is the variance ofY , σXY is the covariance of
X and Y , c1 = �k1L�2 and c2 = �k2L�2 are constants used tomain-
tain stability, L is the dynamic range of pixel values, k1 = 0.01,
k2 = 0.03, and L = 255. Figure 3 shows the SSIM curves of the
reconstructed image with varying sparsity of patterns. The range
of SSIM varies from 0 (when two images are different) to 1
(when two images are the same). It can be clearly observed that
the SSIM of GI/GISC obtains the greatest value when the spar-
sity is 0.5 under a fixed noisy light level and decreases as the spar-
sity deviates from 0.5.
In order to explain the results of GI and GISC shown in Figs. 2

and 3, detection SNR (DSNR) and some characteristics of the
measurement matrix A are analyzed. Based on the knowledge
of GI and GISC, the DSNR of GI is defined as the ratio of the
bucket signal fluctuation and the noise light fluctuation, and
the DSNR of GISC is defined as the ratio of the bucket signal
mean value and the noise light fluctuation:

DSNRGI = 10 log10
std�Y�

std�Noise�, �9�

DSNRGISC = 10 log10
mean�Y�
std�Noise�, �10�

Fig. 2. Experimental results of GI and GISC under different noise levels. (a)–
(d) are imaging results of GI under 0 mW, 0.1 mW, 0.6 mW, and 3 mW noise light
power, respectively; (e)–(h) are imaging results of GISC under 0 mW, 0.1 mW,
0.6 mW, and 3 mW noise light power, respectively. From top to bottom, (i)–(vii)
represent the sparsity of {1, 64, 512, 2048, 3584, 4032, 4095}/4096, respectively.

Fig. 3. SSIM of GI and GISC under different noisy light levels. (a) and (b) are
SSIM of GI and GISC versus sparsity of patterns, respectively.
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where std�•� denotes standard deviation. The bucket signal
when the noise light power is 0 mW is taken as the signal Y ,
and the Noise term is obtained by calculating the difference
between the signal Y and the bucket signal when the noise light
power is 0.1 mW, 0.6 mW, and 3 mW.
The theoretical analysis of measurement matrix A according

to Eq. (5) and the experimental DSNR of GI are shown in Fig. 4.
In Fig. 4(a), the grayscale fidelity γ reaches its maximum when
the sparsity β is 0.5. γ drops sharply when β is larger than 0.8 or
smaller than 0.2. In Fig. 4(b), DSNRGI has its biggest value when
the sparsity is 0.5, and the DSNRGI declines rapidly when β is
larger than 0.8 or smaller than 0.2 for a fixed noise level.
Through Figs. 4(a) and 4(b), it shows that, in the framework
of GI, sparsity makes the measurement matrix performance
and DSNR change synchronously when noise is in the same
level. These two factors together influence the imaging quality,
which is consistent with the experimental results shown in
Figs. 2(a)–2(d) and 3(a). When β gets off 0.5, both γ and
DSNRGI decrease, resulting in the degradation of imaging qual-
ity. A large γ value and high DSNR improve imaging quality
in GI.
The theoretical analysis of measurement matrix A according

to Eq. (7) and the experimental DSNR of GISC are shown in
Fig. 5. In Fig. 5(a), the mutual coherence μ increases almost lin-
early as the sparsity β ranges from 0.2 to 0.9, and μ reaches its
maximum when β is about 1. Generally, a small μ guarantees a
better reconstruction quality in compressed sensing (CS)[27].
However, it shows that the reconstruction performance does
not improve when β is smaller than 0.5 in Figs. 2(e)–2(h)
and 3(b), which obviously violates the intuition. It directly shows
that the characteristic of the measurement matrix cannot

exclusively determine the imaging quality in GISC. In Fig. 5,
DSNRGISC increases as β grows. However, the imaging quality
does not. In the circumstance of GISC, it illustrates that either
small μ or large DSNR alone cannot ensure a satisfying recon-
structed image. It is the combination of the measurement matrix
and DSNR that dominates the imaging quality of GISC.

4. Conclusion

In conclusion, we have investigated the influence of the sparsity
of random speckle illumination on GI under different noise lev-
els. The sparsity 0.5 is the best for GI andGISC. TheDSNR of the
bucket signal or the characteristic of the measurement matrix
alone cannot be recognized as the exclusive factor that domi-
nates the imaging quality. It surely happens that, in GISC, a big-
ger DSNR may accompany a worse imaging quality when the
measurement matrix has a larger μ. The measurement matrix
characterisitic should be considered together with DSNR to
evaluate reconstruction performance. We believe this work
may promote practical application for GI via an array source.
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