
Feedback ghost imaging by gradually distinguishing and
concentrating onto the edge area

Junhao Gu (谷俊豪)1,2, Shuai Sun (孙 帅)1,2, Yaokun Xu (徐耀坤)1,2, Huizu Lin (林惠祖)1,2, and Weitao Liu (刘伟涛)1,2*

1 Department of Physics, College of Liberal Arts and Science, National University of Defense Technology, Changsha 410073, China
2 Interdisciplinary Center of Quantum Information, National University of Defense Technology, Changsha 410073, China

*Corresponding author: wtliu@nudt.edu.cn
Received June 16, 2020 | Accepted October 9, 2020 | Posted Online January 7, 2021

Applications of ghost imaging are limited by the requirement on a large number of samplings. Based on the observation that
the edge area contains more information thus requiring a larger number of samplings, we propose a feedback ghost im-
aging strategy to reduce the number of required samplings. The field of view is gradually concentrated onto the edge area,
with the size of illumination speckles getting smaller. Experimentally, images of high quality and resolution are successfully
reconstructed with much fewer samplings and linear algorithm.
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1. Introduction

Ghost imaging (GI) provides a way to obtain images with a
single-pixel detector, employing second-order correlation
between the illumination field and the signal from the object.
Since the first realization with entangled photons[1–3], research-
ers made great developments in different aspects[4–14], showing
its ability for lensless imaging[15] and robustness against
noise[16,17], and exploring possible applications in different
fields[18–24]. With the illumination patterns actively controlled
and computed, the detector in the reference arm can be omitted,
which further simplified the system into a real single-pixel im-
aging system. This is called computational GI[25–28]. Due to the
feature of correlation, a large number of measurements are
required to achieve high-quality images, which limits the perfor-
mance of GI. Many methods[29–35] have been proposed towards
this issue. Based on the sparsity of the interested scene, compres-
sive GI (CSGI)[30,31] has been proved to be an effective method
to decrease the number of required samplings, with the cost of
heavy computing consumption. Then, adaptive GI methods
based on compressed sensing and wavelet trees[31–33] were
reported to slow down the growth of computing consumption
over the size of the image. However, complicated data process-
ing algorithms are still required, which also costs additional time
after data sampling. Therefore, methods that can decrease both
the number of required measurements and computation con-
sumption are crucial for real-time imaging.
In conventional GI, every pixel within the illuminated scene is

treated evenly, without considering how much information is
required to properly describe it. Towards this, researchers

performed GI in an adaptive way, by adjusting illumination pat-
terns according to previous results[36–39]. As is observed, the
edge areas of the objects contain the most details, and thus more
information is required to clearly reconstruct the image of those
areas. At the same time, the temporal–spatial distribution of
speckles determines the information we can achieve from the
target. If we divide the imaging process into different stages
and gradually find out it and concentrate on the edge area, it
is possible to improve effective information obtained via each
measurement. Based on this idea, we propose a method named
edge lit feedback GI (ELFGI) to adaptively adjust the field of
view and the average size of speckles according to the previous
images; thus, the illumination area providing higher spatial res-
olution is gradually concentrated onto the edge area. The image
of the scene is gradually becoming distinct, while the number of
required samplings is greatly reduced compared to conventional
GI. Data processing is performed along with data acquisition,
using a linear algorithm.

2. The Scheme

In a typical GI system, a sequence of patterns are illuminated
onto the object, with the counterpart echoes from the object
detected with the bucket detector; then the correlation between
these patterns and the detection results provides the image. In
our scheme, the sequence of patterns is adaptively arranged.
According to different settings of the illumination patterns,
the whole imaging process is divided intomany rounds. For each
round, four steps are performed, namely, edge searching, pattern
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generation, sampling, and image updating. Firstly, we consider
binary sparse objects for convenience. The scene is described as
O, with the size of n × n. We use Fk to denote the field of view,
and Sk to denote the size of speckles in the kth round. In every
round, an image GIk�~rk� of size n

Sk
× n

Sk
is reconstructed. Here,~rk

is the coordinate in the image, and the resolution is Sk. Every
value in GIk actually shows the total reflection within the block
with the size of Sk.GIk is then used as the input of the next round.
A flow diagram is shown in Fig. 1. To start, we light up the whole
scene andmeasure the reflected intensity of the target asGI0, the
resolution of which is S0 = n. Then, the imaging process moves
forward to the rounds containing the following four steps.
Step 1: edge searching. For binary targets, the grayscale values

within the object (background) areas are close to the maximum
(minimum), with noise involved. If these areas are picked out,
the rest of the area is the edge area. Considering white
Gaussian noise in bucket detection with the standard deviation
σ, the standard deviation of the error in every pixel of the cur-
rently obtained imageGIk−1 is

σ�����
Nk

p , withNk being the total num-

ber of performed measurements. Considering the errors, we can
pick out the edge areas Ak, which are defined as the set of~rk−1,
which satisfies

min�GIk−1� � ϵ < GIk−1�~rk−1� < max�GIk−1� − ϵ: (1)

Here, ϵ = T�����
Nk

p actually defines the tolerance of errors, and T is set

as a constant, since σ can be taken as unchanged during each
experiment. In practice, σ can be estimated from the fluctuation
of the bucket detection under the same illumination, and T is set
as 6σ. Higher T promises higher confidence that the selected
part belongs to the edge area.
Step 2: generation of illumination patterns. Since the image

obtained in each round is used as the input of the next round,
the quality of the image will be important for edge searching. GI
with Hadamard patterns[40,41] provides an image of high accu-
racy with complete samplings. Therefore, we use the Hadamard
matrix as the basic pattern, with each row of the matrix being
one frame of the illumination pattern, and perform complete

samplings for each round to achieve an image of as high quality
as possible. Since the size of speckles is large when the field of
view is large, and the field of view is concentrated to the edge
area when the size of speckles becomes small, a large number
of frames are not required, as will be shown later. Each element
in GIk−1 corresponds to the reflection of a block with the size of
Sk−1. Ak is also constituted with such blocks. To obtain more
details about the edge area, the resolution should be improved,
which means the speckles in the new masks should be smaller
than those of the previous rounds. Each block in Ak with the size
of Sk−1 is divided evenly into four squares, with every square
being a new block in this round. The size of the blocks is Sk =
Sk−1=2 with the coordinates updated into~rk. When used to
generate the masks, each element of the Hadamard matrix
describes the intensity of the counterpart block in the mask.
As defined, the number of elements in each mask is
2m �m ∈ N��. To match the illumination area Fk with the deter-
mined edge area Ak, we set mk =max�dlog2n

0
ke,2�, where n

0
k is

the number of blocks contained in Ak. That is, we set the illumi-
nationmatrix to be the smallest Hadamardmatrix that can cover
the edge area, and every block in Ak is a speckle in Fk. As
the number of speckles in Fk is nk=2mk , a Hadamard matrix
of 2mk × 2mk can be used to generate the masks, according to
the recursion relationship[41]:

Hmk
=

0
BBBBB@

1 1 1 1

1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

1
CCCCCA

⊗ Hmk−2 =

0
BBBBB@

h�1�k

h�2�k

h�3�k

h�4�k

1
CCCCCA
, (2)

where Hmk−2 is the Hadamard matrix of 2mk−2 × 2mk−2, and

h�j�k �j = 1, · · · ; 4� contains 0.25nk rows of Hmk
, respectively. ⊗

here represents the operation of the Kronecker product. In tradi-
tional Hadamard GI, each row ofHmk−2 is reshaped into an illu-

mination mask I 00kt . Since the measurement matrix h�1�k is
equivalent to Hmk−2

, which represents those patterns of the last
round with GIk−1 being the imaging result, only the parts con-

taining h�2�k , h�3�k , and h�4�k are necessary in the current round,
with each row reshaped into an illumination mask Ikt .
Step 3: sampling. Ikt determined in the previous step are the

expected masks, which contain negative values. In practice, the
values of −1 in Ikt are changed into zero, as

I
0
kt = �Ikt � 1�=2, ~rk ∈ Fk: (3)

Here, I
0
kt is the actually performed illumination. Then, the

reflected intensity is measured and written as

B
0
kt =

X
~rk

I
0
kt�~rk�O, ~rk ∈ Fk: (4)

Therefore, Bkt corresponding to the expected illumination Ikt
can be obtained as

Fig. 1. Schematic diagram of feedback GI. The picture shows the flow diagram
of ELFGI, which is divided into four steps. The arrows show the direction of the
steps and data. The red arrow of Step 3 also shows that the illumination pat-
terns are lighted onto the target.
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Bkt =
X
~rk

�2I 0
kt − 1�O = 2B

0
kt −

X
~rk

GIk−1, ~rk ∈ Fk, (5)

where we use GIk−1 to replace O within Fk, as GIk−1 is actually
the measured reflection of the target from previous rounds,
while O is the real reflection.
Step 4: image updating. The new image GIk is constituted by

two parts, the area in and out of Fk. For the area in Fk, GIk =
hBktI 00kti as I 00kt corresponds to the wholeHmk

. GIk−1, with the size

expanded, is used to take the role of h�1�k , which occupies one
quarter of Hmk

in our method. Thus, GIk can be reconstructed
with

GIk = 0.25GIk−1 ⊗
�
1 1
1 1

�
� 0.75hBktIkti: (6)

For the area out of Fk, the value on each pixel of GIk equals
one quarter of GIk−1 at the same position, due to the size chang-
ing of speckles. Since Ikt�~rk ∈= Fk� = 0, Eq. (6) also works for the
region out of Fk, from which the image GIk is updated for the
whole scene.
After Step 4, if Sk has reached the limit of the imaging system,

the whole imaging process is finished, and GIk is taken as the
final result; otherwise, move to Step 1 for the next round.

3. Experiments and Results

To implement our method, we build a very simple setup, as
shown in Fig. 2. A commercial projector (Panasonic PT-X301)
is employed as the source, which outputs different masks with
256 × 256 pixels, controlled by a laptop. The size of each pixel
is 0.24 mm × 0.24 mm on the object plane, which is 45 cm away
from the output lens of the projector. The reflected light by the
target is collected with a lens and detected by a CCD camera. For
each frame, the values on all pixels of the camera are summed up
and quantified to 0–255 as the bucket detection. Data acquisi-
tion and data processing are performed simultaneously. After
each round, the edge area is picked out with the laptop, and then
new illumination patterns for the next round are generated,
which will be imprinted on the object plane to update the image.
The objects used in our experiments are made by cutting

a piece of paper into Chinese characters, as shown in Figs. 3(a1)
and 3(c1). The images retrieved in the 4th–7th rounds with

ELFGI are shown in Figs. 3(b1)–3(b4) and 3(d1)–3(d4). The
reconstructed images become distinguishable after four rounds,
clearer and clearer. The edge area, which is also the field of view,
is getting smaller and smaller. The number of pixels illuminated
in the 4th–7th rounds is 16,384, 8192, 8192, and 4096, respec-
tively. The resolution is increased as average sizes of the speckles
at the 4th–7th round are 16, 8, 4, and 2 pixels, with the corre-
sponding number of speckles within the illumination area being
64, 128, 512, and 1024, respectively. The total number of per-
formed illumination patterns is 70, 166, 550, and 1318, respec-
tively. The images shown in Figs. 3(a2)–3(a4) and 3(c2)–3(c4)
are the results of conventional GI with 2000 frames using ran-
dom speckles, and the average sizes of the speckles are 16, 4, and
2 pixels, respectively. It can be seen that the images retrieved
with our method appear to be with higher quality than that of
conventional GI. To quantitatively compare those results, the
mean square error (MSE) is considered, defined as MSE =
1
n2
P

~rk �GI�~rk� − O�2. The referenceO is obtained with traditional
imaging. The results via ELFGI become clear fast when MSE
drops sharply. The result is very close to the target after seven
rounds, with the MSE being 0.0075. With the same number
of measurements, the MSEs of conventional GI are 0.24, 0.11,
and 0.041 when the average sizes of speckles are 16, 4, and 1
pixel(s). From these results, it is verified that our method helps
get an image of higher quality with fewer samplings with a sim-
ple retrieving algorithm. Thus, the process of GI can be acceler-
ated with our method.

Fig. 2. Experimental setup. The illumination patterns are generated via a lap-
top (not shown), which controls the emission of a commercial projector. The
reflected light from the object is collected with a lens and detected with a CCD
camera with the results on all the pixels summed up as a bucket detector.

Fig. 3. Experimental results for two targets shown in (a1) and (c1). (a2)–(a4)
and (c2)–(c4) show imaging results via GI using random speckles, with the size
of speckles being 16, 4, and 2 pixels, respectively. The number of measure-
ments is 2000. (b1)–(b4) and (d1)–(d4) show results of ELFGI with T = 12
obtained at the 4th–7th round, costing 70, 166, 550, 1318 and 43, 139, 523,
1291 frames, respectively.
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Actually, ourmethod also provides a way to remove the trade-
off between high resolution and high signal-to-noise ratio
(SNR)[42], both of which require a large number of samplings.
To demonstrate this, we do simulations for the chart with objects
of different sizes, as shown in Fig. 4(a1). Results from different
methods are shown in Figs. 4(a2)–4(a4). It takes 65,536
samplings for GI with Hadamard patterns. For conventional
GI with random speckles, the narrowest stripes are still barely
visible with 47,104 samplings. With our method, fewer sam-
plings (4480) are required to achieve the expected resolution.
Therefore, the requirement on a high number of samplings
for high resolution is greatly reduced.
Ourmethod can also work for grayscale objects, with the algo-

rithm of edge searching adapted. We simulate imaging an object
of three-level grayscale values, as shown in Fig. 4(b1). To find
out the edge area, the Canny operator algorithm is used. The im-
aging results are shown in Figs. 4(b2)–4(b4). With eight rounds
and 6016 samplings in total, an image of 256 × 256 is perfectly
retrieved. That is, our method has the capacity to reconstruct
grayscale images with the number of required samplings
reduced.
The performance of our method under noise is also explored

with simulations, with the results shown in Fig. 5. The SNR of
the bucket detection, defined as the ratio between the average
value of the bucket detection and the standard deviation σ of
noise, is used to measure the influence of noise. The amount
of required samplings is proportional to σ2 for traditional GI
to get the image of certain quality. As for ELFGI, we change T
according to the noise and repeat measurements in the first five
rounds to increase reliability of the measurement. Although a
decline in the quality is unavoidable, the image is distinguishable
using ELFGI or CSGI. From the results, with a comparable num-
ber of measurements, the imaging quality of CSGI is a little bet-
ter than of ELFGI. However, the time cost for extra calculation in
CSGI (90 s for 4500 samplings using a laptop with CPU of E5-
2667 at 3.30 GHz) is hundreds of times longer than that of

ELFGI (0.39 s). The algorithm of CSGI used here is a gradient
projection for sparse reconstruction.
Experimentally, we are using a commercial projector, which

makes the experiments easier to perform. Such projectors are
usually not fast enough for real-time imaging. By modulating
a laser with a digital micro-mirror device (DMD) or a spatial
light modulator (SLM), the refresh rate of the source can be
improved. Then, the sampling rate and the minimum resolution
of GI can be improved. The time consumption of the calculation
can also be reduced by hardware design. Therefore, our method
makes GI closer to practical applications, since fewer samplings
are required. Although we employed Hadamard illumination
patterns in our discussion and experiments, the design and
selection of illumination patterns are not confined. The key of
our method is to gradually find out the edge area and adaptively
adjust the field of view as well as the size of speckles. Besides, it is
also possible to obtain the edge area using existing methods
based on GI [43,44] and concentrate the illumination patterns
accordingly.

4. Conclusion

In conclusion, based on the observation that the edge area
requires more information and thus more samplings, we pro-
posed and demonstrated a feedback strategy for GI. In this
method, the edge area is determined from previous images,
and then the illumination patterns with smaller speckles are
concentrated onto the edge area. Thus, more details about the
edge will be extracted, while the number of samplings does
not increase much since the field of view is reduced. The exper-
imental results show that ourmethod helps to speed up the proc-
ess of GI. Images of high quality can be reconstructed from a
greatly reduced number of samplings, compared to conventional
GI. This method can be very helpful for medical imaging, since
low sampling number requirement means low photon flux and
thus less radiation injury.

Fig. 4. Simulation results. (a1) is the target for resolution test, with the width
of the narrowest stripes being 1 pixel. (a2) shows results of ELFGI with T = 0,
(a3) is obtained via GI with random speckles, and (a4) shows results of GI with
Hadamard patterns. The number of samplings is 4480, 47,104, and 65,536,
respectively. (b1) is a grayscale target of three-level values. (b2)–(b4) are
the results of ELFGI with T = 0, obtained in the 4th, 6th, and 8th rounds under
256, 1408, and 6016 samplings.

Fig. 5. Simulation results under different noise with different methods. The
amount of samplings is 16,384, 65,536, 262,144, and 1,048,576 for traditional GI
and 5829, 10,528, 17,984, and 21,056 for ELFGI with T= 0, 76, 152, 304, respectively.
As for CSGI, it costs 6000, 8000, 16,000, and 20,000 samplings.
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