
Classification of interference-fading tolerant Φ-OTDR
signal using optimal peak-seeking and machine
learning [Invited]

Yixin Zhang (张益昕)1, Tong Zhou (周 桐)1, Zhewen Ding (丁哲文)1, Yanqing Lu (陆延青)1, Xuping Zhang (张旭苹)1*,
Feng Wang (王 峰)1, and Ningmu Zou (邹宁睦)2**

1 Key Laboratory of Intelligent Optical Sensing and Manipulation (Nanjing University), Ministry of Education, Nanjing 210093, China
2 Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, USA

*Corresponding author: xpzhang@nju.edu.cn

**Corresponding author: nz86@cornell.edu
Received October 23, 2020 | Accepted January 19, 2021 | Posted Online March 9, 2021

A simple and effective interference-fading tolerant method for phase-sensitive optical time-domain reflectometry
(Φ-OTDR) using optimal peak-seeking is proposed. This method can reconstruct the vibration signal with high fidelity under
the premise of using only an ordinary single-mode sensing fiber without changing the structure of the traditionalΦ-OTDR
system. Based on the data after interference suppression, we applied different machine learning models to recognize the
invasive events category. The promising results show potential applications of Φ-OTDR equipment and future implemen-
tation with machine learning algorithms.
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1. Introduction

Phase-sensitive optical time-domain reflectometry (Φ-OTDR),
as a rising star of a fully distributed optical fiber sensor (DOFS),
has recently attracted significant attention for its merits like fast
response, high sensitivity, and multi-point detection capacity[1].
The technology has been widely applied in many important
fields like intrusion detection[2], structure health monitoring[3],
oil and gas pipeline monitoring[4], underwater acoustic and seis-
mic monitoring[5], and more. In order to extract information
from Φ-OTDR, early research took the amplitude of Rayleigh
backscattering (RBS) light as the sensing parameter and
obtained the location and frequency information of external
disturbance. It is worth noting that the relationship between
intensity changes and vibration is nonlinear, and the variation
in intensity magnitude could not represent the magnitude of
demodulated vibration. In recent years, researchers have shifted
their focus to the phase of RBS due to its linearity with vibra-
tion[6]. Then, the phase-demodulatedΦ-OTDR system based on
heterodyne coherent detection was proposed. With phase
extraction and spatial difference processing, the Φ-OTDR tech-
nique enables us to realize quantitative detection of the
vibration.
However, phase-demodulatedΦ-OTDR based on heterodyne

coherent detection unavoidably suffers from interference fading,

which is commonly attributed to the random nature of RBS[7].
Fading problems may make the RBS signal from some fiber sec-
tions fall into the destructive area, namely the dead zone. When
the signal drops into the dead zone, the signal-to-noise ratio
(SNR) would be very poor, and we could hardly demodulate
the phase[8]. Such fading cases may cause high occurrence of
false-alarm events, which brings great inconvenience to the
in-field application of Φ-OTDR[9].
In this paper, we propose an effective and simple method to

suppress interference fading forΦ-OTDR sensing systems based
on heterodyne detection. Since the phase-demodulated result is
positively correlated with RBS intensity, we dynamically track
the optimal location of RBS intensity in each section of the sens-
ing fiber for reliable demodulated phase. The performance of
our method is first verified in laboratory conditions and then
tested in the field. The obtained results show that our method
can suppress the occurrence probability of fading areas to a large
extent and is expected to extend the engineering application
realm of the existing phase-OTDR system.

2. Methods

The flow chart of the proposed method is shown in Fig. 1. First,
we perform band pass filtering on the beat signal to obtain the
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intermediate frequency (IF) component and then perform in-
phase quadrature (IQ) demodulation[10] to obtain its amplitude
and phase. Then, we select the time-domain (TD) amplitude
average window and average the amplitude along the time axis.
Then, we select the window size Wsize and equally divide the
amplitude trace intoN intervals along the distance axis to obtain
the signal strength value at the same location.N is the downward
integral value of n=Wsize, and n is the number of sampling
points. These moving average results were used for selecting
the optimal location. However, different Wsize will cause the
probability density function distribution to change. Figure 2(a)
shows the probability of the maximum amplitude falling into
the dead zone under different Wsize (10 dB SNR guaranteed).
Since the probability of falling into the dead zone is also differ-
ent under different pulse widths, we designed an experiment.
Figure 2(b) shows the probability of the maximum ampli-
tude falling into the dead zone under different pulse widths
(10 dB SNR guaranteed). According to the statistical results
of Fig. 2, the Wsize selected should cover at least two spatial
resolutions.
Then, the position of amplitude peak in each interval is found,

and the phase difference between nearby peaks is calculated. TD
differencing is further performed on the phase difference result
between current and previous measurements. Then, the vibra-
tion applied on the fiber could be reconstructed through integra-
tion and unwrapping[11].
Performance of the proposed method is verified by commer-

cial Ф-OTDR equipment (Ada-5032E, Nanjing Fiber
Technology Co., Ltd.), as shown in Fig. 3(a). Its internal struc-
ture and experiment setup are shown in Fig. 3(b).
A 3.7 kHz line-width laser (narrow-linewidth laser, NLL)

operating at 1550.12 nm was selected as the light source. The
output of the NLL was split into two parts at 80% and 20% as

Fig. 1. Flow chart of fading suppression method.

Fig. 2. (a) Probability of signal falling into the dead zone under different win-
dow size (100 ns). (b) Probability of signal falling into the dead zone under
different pulse width.

Fig. 3. (a) Ada-5032E. (b) Schematic diagram of the experiment. (NLL, narrow-
linewidth laser; AOM, acoustic-optical modulator; FUT, fiber under test; EDFA,
erbium-doped fiber amplifier; Cir, circulator; BPD, balanced photodetector;
DAQ, data acquisition card; PZT, piezo transducer.)
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the probe light and the local reference light, respectively, by an
optical coupler. The probe part was modulated into probe pulse
with 150 MHz frequency shift induced by an acoustic-optic
modulator (AOM). The probe pulse with pulse width of
100 ns and repetition rate of 1 kHz was amplified in an
erbium-doped fiber amplifier (EDFA) and then launched into
the fiber under test (FUT) through a circulator.
To simulate the external vibration, a piezo transducer (PZT)

wrapped with 30-m-long single-mode fiber was located around
475 m along the sensing fiber, which is driven by a sinusoidal
voltage signal with the frequency of 25 Hz. Then, a 1095 m fiber
was placed at the far end of the FUT. The RBS light returning
from the FUT mixed with the local reference light and finally
was detected by a balanced photo detector (BPD) with
200MHz bandwidth. An 8 bit data acquisition card (DAQ) con-
tinuously sampled the output data with a 1 GHz sampling rate.
The phase demodulation was completed on a personal com-
puter.We continuously recorded data for 300 s to guarantee that
the RBS signal from all regions has enough time to experience
various possible states. We take the 15 s phase result to show
and perform short-time Fourier transform (STFT) to it. It can
be clearly seen from Fig. 4 that the phase results obtained by
the traditional method have eight errors in 4–9 s and 11–14 s,
while the phase results obtained by the proposed method have
no errors in 15 s.

3. Results

The phase results obtained by the proposed method within
5 min were statistically analyzed and compared with the tradi-
tional method. As shown in Fig. 5, the accuracy of the proposed
method is always superior to the traditional method. To further
verify the feasibility of our proposed method, we made an in-
field test of buried power cable anti-breakage monitoring using
a Ф-OTDR running both the traditional and proposed algo-
rithms. We hit the ground 15 m away from the cable 10 times
with periods around 3 s. Figure 6 shows the STFT spectrum of

Fig. 4. STFT spectrum of phase results in 15 s. (a) Traditional method.
(b) Proposed method.

Fig. 5. Accuracy of two methods within 5 min.

Fig. 6. STFT spectrum of 10 ramming ground tests. (a) Traditional method.
(b) Proposed method.
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the events. Obviously, we can clearly distinguish 10 ramming
with the proposed method, while the first four events were sub-
merged in the noise if the traditional method is applied. Our fad-
ing suppression did lower the location accuracy as a tradeoff of
the wider range of detectable frequency. In our experiment, the
original instrument setup can tell the invasive events within
±10m, and the processed data can tell events located within
±20m.We are able to tell if the signal is a false alarm and further
differentiate the type of invasive events through machine learn-
ing algorithms in real applications. This ability is much more
important than the ±10m location accuracy. Furthermore, we
are still able to detect the event locations by backtracking signals
from neighboring regions and doing further analysis based on
their phase and strength data separately.
Based on different applications, trigging events would

have varied features and characteristics. In this research, we
are focusing on events that could damage the infrastructure con-
structions, such as the invasive events of electric power transmis-
sion lines and tunnel construction accidents. In these physically
invasive events, we need to recognize and differentiate dis-
turbing cases, which may contain digging, knocking, hammer-
ing, and so on. It is computationally expensive to deal with
original events data without data processing and filtering.
Therefore, it is necessary to extract and digitalize event charac-
teristics and reduce background noise so that both the training
and testing models can be applied to events effectively (Table 1).
We used multiple feature extraction algorithms based on the TD
and frequency-domain (FD) signals from the invasive events.
For the TD feature extraction, we first calculated the signal
energy (SE) as

SE =
Xn−1
i=0

jx�n�j2: (1)

Because SE is sensitive to high levels, if a sampling point has
serious distortion, it will have a great impact on the parameters.
Our proposed method has a good effect on signal distortion so
that events with outlier SE can be removed. We also take the
mean amplitude and standard deviation of all events into con-
sideration. Moreover, the disturbance duration of the signal can
reflect whether the disturbance event is transient or long-term.
So, we divide duration t into three levels, which will also be used
to distinguish events:

L�t� =
8<
:
1 �short�, 0 < t < 5 s
2 �medium�, 5 < t < 30 s
3 �long�, t > 30 s

: (2)

To better extract the FD features, we first process the data with
STFT.We observed an example of an excavator digging event, as
shown in Fig. 7.
Based on the characters of events we collected, we categorized

all events into five different types; each of them was labeled as
1–5 (Table 2). Then, we extracted all TD features of these events,
such as SE, signal variance, and L�t�. After STFT transfer, we set

a pixel value threshold and changed the original pattern into a
binary image. Then, we extracted nine features from both TD
and FD patterns. We applied the support vector machine
(SVM)[12] and feedforward neural network on the pattern rec-
ognition of these signals. Before classification, we randomly
selected 283 cases as the training dataset, in which the number
of cases in each category is 69:107:40:28:39. The rest of the cases
were treated as a testing dataset for the model evaluation. An

Fig. 7. (a) Excavator digging event. (b) Time domain wave pattern of an inva-
sive event. (c) Frequency-domain image after STFT. (d) Binary image after
threshold filtering.

Table 1. Definition of Pattern Features.

Feature Symbol Description

Area S Total number of pixels

Perimeter P Number of pixels on edge

Compactness Con (Square of P)/S

Number of clusters Nc Number of connected pixel clusters

Table 2. Category and Counts of Samples and Labels.

Event Category Number of Samples Label

Excavator digging 93 1

Engineering truck passing 148 2

Falling rock 53 3

Pile driver hitting 37 4

Directional drilling 52 5
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RBF function was selected as the kernel function when we use an
optimized SVM model, in which C = 2048 and γ = 0.0078.
Moreover, we also tried the feedforward neural network for

the same training and testing dataset. As shown in Fig. 8(b),
there are 10 perceptrons in the hidden layer and five perceptrons
in the output layer. We use tansig as the hidden layer transfer
function, purelin as the output layer transfer function, and
traingdx as the network training function. As a result, both
the SVM and neural network models achieve high testing accu-
racy in most of cases (Table 3). For all cases with labels 1, 2, 3,
and 5, both models can achieve 100% accuracy. For cases with
the label 4, the accuracy is lower since the pile driver hitting
events could be mislabeled as falling rock events (label 3).

4. Conclusions

In this report, a simple and effective method was introduced for
interference-fading suppression in theΦ-OTDR sensing system.
The performance of our method has been demonstrated under
both laboratory and field conditions. Experimental results have
shown that our method can greatly suppress fading and obtain
higher quality demodulated signals, which is expected to be a
powerful method to enhance the performance of the Φ-OTDR
system in engineering applications. Based on the data after inter-
ference suppression, we applied different machine learning
models to recognize the invasive events category. The promising
results show potential applications of Φ-OTDR equipment and
future implementation with machine learning algorithms.
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