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We propose a color ghost imaging approach where the object is illuminated by three-color non-orthogonal random pat-
terns. The object’s reflection/transmission information is received by only one single-pixel detector, and both the sparsity
constraint and non-local self-similarity of the object are utilized in the image reconstruction process. Numerical simulation
results demonstrate that the imaging quality can be obviously enhanced by ghost imaging via sparsity constraint and non-
local self-similarity (GISCNL), compared with the reconstruction methods where only the object’s sparsity is used. Factors
affecting the quality of GISCNL, such as the measurement number and the detection signal-to-noise ratio, are also studied.
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1. Introduction

Ghost imaging (GI) is a non-local imaging method, which
reconstructs an unknown image by computing the intensity cor-
relation function between the bucket signal from the object and
the reference intensity distribution[1–8]. When the technique of
compressed sensing is introduced into GI where the object’s
sparsity is utilized in the process of image restoration[9], GI
via sparsity constraint (GISC) has experimentally demonstrated
that the object’s image can be reconstructed with the measure-
ments far below the Nyquist limit[9–11], and even super-
resolution GI can be obtained[12]. In recent years, significant
progress has been developed on GISC, especially in the
areas of remote sensing[11], three-dimensional imaging[13–15],
and microscopy[16,17].
Recently, color GI and multi-spectral GI have been receiving

increasing interest[18–23]. Generally speaking, there are two
approaches to realize color GI[20–23]. One is that the object is illu-
minated by a three-color random pattern, where the patterns
between two colors are not orthogonal in the spatial domain,
and the reflected photons from the object are captured by three
color-selective detectors[20,21]. Because some dispersion system
is utilized, and the photons are divided into three detectors, the
receiving system is more complex and costly. In addition, the
energy efficiency is also low. The other one is that the object
is illuminated by a three-color orthogonal random pattern in

the spatial domain, and the signals reflected from the object
are collected by the same single-pixel detector. The method
has the same simple receiving structure as the standard
single-wavelength GI system, but the duty factor of the patterns
is 1/3 for single-wavelength illumination, and GISC for each
wavelength cannot be directly employed[22,23].
As we know, except for the prior knowledge of the target’s

sparsity, most of natural images have some other characteristics
such as orthogonality in three-dimensional spatial structure[24]

and non-local self-similarity in both spatial and spectral struc-
tures[25,26]. In this paper, we propose a color GI approach to
produce a color image, where the target is illuminated by a
three-color non-orthogonal random pattern, and the photons
from the object are directly collected by a single-pixel detector.
Both the sparsity and non-local self-similarity of targets are uti-
lized to improve the quality of the color GI in the image
reconstruction process. The validity of this approach is verified
by numerical simulation.

2. Method of Color Ghost Imaging and Image
Reconstruction

The principle scheme and sampling procedure of the proposed
color GI approach are shown in Fig. 1. The color pattern A,
which consists of three binary random coding patterns AR,
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AG, AB, with a duty cycle of 50%, is emitted from the digital light
projector and illuminates the color scene x. Then, the photons
reflected from the scene are focused onto a single-pixel bucket
detector by a collecting lens. We emphasize that different from
Ref. [23], three encoded patterns are random and not orthogonal
in both the spatial and temporal domains, and the red patternAR

only interacts with the object’s red channel xR. Therefore, the
detection model can be expressed as

Bs =
X

i=R,G,B

ZZ
As
i�X,Y�xi�X,Y�dXdY � ωs, ∀s = 1, : : : , k, (1)

where Bs is the intensity recorded by the bucket detector, and ωs

denotes the detection noise. xR, xG, and xB represent the red,
green, and blue images of the color scene, respectively. In addi-
tion, s denotes the sth measurement, and k is the total measure-
ment number.
Obviously, as shown in Fig. 1, Eq. (1) can be described as a

series of matrix operations, namely,
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where both Y and ω are k × 1 column vectors, AR, AG, and AB

are k ×mn matrices, and x = � xR xG xB �T is a 3mn × 1 col-
umn vector.
According to the measurement model displayed in Fig. 1 and

Eq. (2), we will try to reconstruct the colored image by three dif-
ferent reconstruction algorithms based on compressive sensing.
The first reconstruction method is to reconstruct the RGB
images according to the same echo signal Y and the correspond-
ing random patterns AR, AG, and AB, respectively. The
reconstruction model (GISC_R) can be expressed as

Oxi = arg min
Oxi

≥0
kY − AiOxik22 � μ1TV�Oxi�, ∀i = R,G,B, (3)

where OxR , OxG , and OxB are, respectively, corresponding to the
RGB images of the object, μ1 denotes the relaxation factor that
determines the balance between the reconstruction error and the
signal’s sparsity, and TV is the sum of the magnitudes of the dis-
crete gradient in the horizontal Dh and vertical Dv directions,

which can be represented as TV =
P ������������������

D2
h � D2

v

p
. In addition,

the color image of objects Ox can be obtained by synthesizing
the images of OxR , OxG , and OxB .
From Eqs. (2) and (3), it is obviously observed that Eq. (3) is a

parallel reconstruction approach, and the computing scale of
each single-wavelength image reconstruction is small, but the
signal of the other two color images is considered noise in the
reconstruction process of each single-wavelength image, which
will lead to the degradation of the imaging quality.
Different from the first reconstruction method described in

Eq. (3), the second reconstruction method is to directly restore
the object’s RGB images at the same time, which has been widely
used in the field of spectral imaging[27]. The reconstruction
model (GISC) can be described as

Ox = arg min
Ox≥0

kY − AOxk22 � μ1TV�Ox�: (4)

Compared with Eq. (3), Eq. (4) has larger computing data, but
only the detection noise ωwill disturb the image reconstruction;
thus, the reconstruction results of GISC will be better than that
obtained by the method of GISC_R.

Fig. 1. (a) Principle scheme of proposed color ghost imaging and (b) its sam-
pling model.
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For natural images, except for prior knowledge of the target’s
sparsity, non-local self-similarity is also a significant a priori
characteristic, which was firstly utilized in the field of image
denoising[25,26]. Non-local self-similarity is considered where
there are lots of similar structures or textures in the spatial or
spectral domain for an image. As shown in Fig. 2, the structure
of the areas labeled by the red color square [Fig. 2(a)] is similar in
the spatial domain for a single-wavelength image, and the
labeled square areas of Figs. 2(b) and 2(c) are similar in the spec-
tral domain. Generally speaking, as displayed in Fig. 2, com-
pared with the spatial image, non-local self-similarity is much
more obvious for color and spectral images. On the basis of
Eq. (4), the reconstruction model of GISC and non-local self-
similarity (GISCNL) can be expressed as

Ox = arg min
Ox≥0

kY − AOxk22 � μ1TV�Ox� � μ2NL�Ox�, (5)

NL�Ox� =
X
j

koxj − bTj βjk22, (6)

where μ2 denotes the relaxation factor, and NL�Ox� is the non-
local self-similarity constraint. bj is the column vector contain-

ing all of the weights blj, and βj is the column vector containing

all olxj . In addition, oxj and olxj are the central pixel of similar

patches oxj and olxj in the whole image Ox. Compared with

the second reconstructionmethod described in Eq. (4), the a pri-
ori knowledge of non-local self-similarity has been exploited in
the reconstruction progress, and the reconstruction quality may
be further enhanced by GISCNL.
In order to evaluate quantitatively the different

reconstruction algorithms, the reconstruction quality is esti-
mated by calculating the peak signal-to-noise ratio (PSNR)[28],

PSNR = 10 × log10

��2p − 1�2
MSE

�
: (7)

For a 0–255 gray-scale image, p = 8, and MSE is mean square
error of the reconstruction image with respect to the original
target, namely,

MSE =
1

Npix

X
�Ox − x�2, �8�

where Npix is the pixel number of the reconstructed image.

3. Simulation Results

To verify the feasibility of the proposed method, a pure trichro-
matic slits image and a generic RGB peppers image, as shown in
the first row of Figs. 3(a1) and 3(b1), are used as the imaging tar-
gets. All simulations are based on MATLAB2014A with 8G
memory, Intel Core i5-6200u laptop. Both random patterns
illuminating the targets and the targets are 70 × 70 pixels.
Figures 3(a2)–3(a4) and Figs. 3(b2)–3(b4) illustrate the recon-
structed RGB images of the slits and peppers, and their RGB
images are shown in Figs. 3(a1) and 3(b1) based on the
reconstruction model described in Eqs. (3)–(5). We have
exploited the iterative reweighted least squares (IRLS) algorithm
for the image reconstruction[29]. The PSNRs of corresponding
reconstruction results are displayed in Fig. 3(c). The results
shown in Fig. 3 suggest that the three reconstruction models
above can recover the target’s color image and divided images
of RGB. It is also clearly seen that the quality of GISC is better
than GISC_R, and the reconstruction quality of GISCNL is the
best in the same conditions when both the object’s sparsity
and non-local self-similarity are exploited in the image
reconstruction process. As shown in the last column of the table,
for the same number of samples, GISC_R and GISC have almost
the same processing time. Because of the higher computational

Fig. 2. Illustration of non-local self-similarity in the spatial domain for a
single-wavelength image and in the spectral domain between two wavelength
images.

Fig. 3. Simulation results of three reconstruction algorithms in the case of
detection SNR = 30 dB and k = 10,000. The first row is the object and their
corresponding RGB images. The second row is the results of GISC_R. The third
row is the results of GISC. The fourth row is the results of GISCNL. (c) The PSNR
of reconstruction results in different reconstruction algorithms. The last
column is the average processing time.
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complexity of GISCNL, GISCNL requires a longer process-
ing time.
In Fig. 4, we have given the reconstructed results in different

measurement number kwhen the detection signal-to-noise ratio
(SNR) is 30 dB. It is observed that the imaging quality is
increased with the measurement number for the three
reconstruction algorithms, and GISCNL is always the best
(GISCNL is higher than 8 dB compared with GISC). What is
more, both GISC and GISCNL have a significant enhancement
as the measurement number increases. In addition, when the
measurement number is greater than 10,000 (namely, the sam-
pling compressive ratio β = k=3mn = 68%), the target can be
perfectly reconstructed by GISCNL.
In order to verify the robust capacity of the reconstruction

algorithms, the corresponding reconstruction results are shown
in Fig. 5 when the measurement number k = 10,000 is fixed,
and the detection SNR is 15 dB, 20 dB, 25 dB, 30 dB, 35 dB,
and 40 dB, respectively. It is obviously observed that the
reconstruction quality is stable for GISCNL when the detection
SNR ≥ 30 dB, whereas GISC is still worse than GISCNL even if
the detection SNR reaches 40 dB, which suggests that GISCNL
has a good robustness even if the sampling number is far below
the Nyquist limit.

4. Conclusions

In summary, we proposed a novel color GI approach to recover a
colored scene, and the non-local self-similarity of targets is also
utilized in the image reconstruction process. The simulation
results demonstrate that the reconstruction quality can be obvi-
ously enhanced, and GISCNL is always better than GISC in the
same conditions. Although the validity of GISCNL is verified by
color GI, the method can be extended to multi-spectral imaging,
and the imaging resolution in both the spatial and spectral
domains may be also improved because much more a priori
knowledge has been used. This technique will also be helpful
in promoting the application of GI.
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