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To balance the accuracy and efficiency in multiple-view triangulation with sequential images, a high-efficiency propagation-
based incremental triangulation (INT) method, carving three-dimensional (3D) scene points by updating the incoming fea-
ture track one by one without iterations, is proposed. Based on the INT method, a more accurate iteration-limited INT
method is also established with few iterations to bound the propagated errors, ensuring the accuracy of subsequent
3D reconstruction. Finally, experimental results demonstrate that the proposed methods can balance the efficiency
and accuracy in different multiple-view INT situations.
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1. Introduction

There has been an escalation in the amount of work dealing
with three-dimensional (3D) reconstruction[1–3], pose estima-
tion[4–6], structure-from-motion (SfM)[7,8], and simultaneous
localization and mapping (SLAM)[9,10], such as applications in
robotics, augmented/virtual reality, and self-driving. A funda-
mental component of these works is triangulation, which refers
to recovering the 3D location from multiple two-dimensional
(2D) image observations with known pose and camera
parameters.
Over the years, many triangulation methods have been pro-

posed, in particular for the case of two or three views, where
robust and fast methods have been developed[11,12]. It is being
verified that more observations of the same scene point can
improve the estimated position, but this also increases the com-
plexity of the problem[13]. Therefore, the procedure given an
arbitrary number of views and noisy observations to perform tri-
angulation is still a difficult task. One of the most well-known
triangulation actions is the midpoint method[14], choosing the
midpoint of the common perpendiculars to all of the rays as
the best position estimation, which is also considered as the fast-
est one given multiple views by far. Nevertheless, this method is
not supposed to be optimal, and the final 3D localization will
potentially be inaccurate due to noisy inputs.
For more accurate triangulation performance, the achieve-

ment of optimal 3D scene points is given enough attention,
but most solve for very small numbers of views, such as two
or three views[14]. For two views, a closed-form solution was

proposed by Hartley and Sturm[15] and made more efficient
and simplified by Lindstrom[16]. Thesemethods yield all station-
ary points of their cost function, which are then checked to
obtain the optimal solution. For three views, the closed-form tri-
angulation method was achieved[17], and they make use of the
Grobner basis to solve polynomial equations. Nevertheless,
the computational complexity increases exponentially with
the number of views, and there is no suitable polynomial solver
for more than three views.
To ensure the global optimum, there are also some methods

based on convex optimization on the L∞-norm cost function
instead of the L2-norm solution[18]. However, it is known that
L∞-norm optimization is extremely vulnerable to outliers[19].
Although some outlier removal method is achieved for L∞-
norm in multi-view geometry[20], the computational cost of
L∞-norm is considerable, and the convex programs have to
be done at each iteration to determine the update direction[21].
Therefore, the L2-norm method is still a popular alternative to
balance the speed and accuracy for multiple-view triangulation.
Based on the L2-norm methods, state-of-the-art incremental

triangulation (INT) problems usually can be solved in two steps,
where initialization is achieved within the first few views, and
then the sequential image comes to the system one by one to
establish a continuous multiple-view triangulation problem.
An obvious solution is to collect all of the observations of the
3D point when encountering a coming observation, and then
a new multiple-view triangulation action is performed repeat-
edly[22]. However, it is a time-consuming process to perform
multiple-view triangulation with iterative optimization[23,24],
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especially in large-scale scenarios, where there are usually a sig-
nificant number of scene points and cameras. The previous
work[24] mainly paid attention to the triangulation issue after
collecting all of the observational vectors at one time, lacking
consideration of the INT and its convergence characteristics.
Thus, instead of establishing an unpredictable iteration-based
multiple-view cost function when encountering a new feature
track one by one, a propagation-based INT method is proposed
in this Letter to carve the 3D estimate only with the incoming
observation.

2. Notations and Preliminaries

The midpoint method for triangulation has a clear geometric
description, where the estimated 3D location is the midpoint
of the common perpendicular to the two observation rays given
a two-view triangulation. For more than two views, it also means
the minimum distances from the 3D point to all of the observa-
tion vectors. As shown in Fig. 1, the location of the 3D point p
can be approached by minimizing the accumulation of the dis-
tance keik2.
Thus, the 3D point p is obtained by minimizing the sum of

squares of the distance for the 3D point to all the N observation
vectors:

e�p� =
XN
i=1

keik2 =
XN
i=1

kBi�p − oi�k2, (1)

where oi is the camera center, and Bi = I3×3 − vivTi is the projec-
tion distance transformation from the point p to the observatio-
nal vector vi.

3. Propagation-Based Incremental Triangulation

Although the midpoint method is fast enough for multiple-view
triangulation, it is considered inaccurate when the camera views
are nearly parallel. Moreover, as depicted in Fig. 1, when the 3D

point p moves far away from the camera center o, the error kek
increases. Nevertheless, all the 3D points that lay on the line op
coincide with the same observation on the 2D image plane.
Therefore, the midpoint method is biased, and it is prone to
overestimate the error for the 3D point that is far away from
the camera center.
To address the biased estimation of the midpoint method by

formulating their optimization problem in terms of the image
reprojection error, the angular reprojection error is another
popular choice, and it is supposed to own superior adaptability
to different camera models[25]. Inspired by these angular repro-
jection errors methods, a weight that is proportional to the dis-
tance between the 3D point and the camera center is proposed.
Thus, the unbiased temporal cost function for multiple-view tri-
angulation is reformed as the following:

e�p� =
XN
i=1

kei�p�k2 =
XN
i=1

kωi�p�Bi�p − oi�k2, (2)

where an explicit weight is assigned by the inversely propor-
tional function to the distance between the 3D point and the
camera:

ωi�p� =
1

kp − oik
: (3)

According to Eq. (2) derived from the L2-norm reprojection
error, it is interesting to find that it is a close approximation to
the angular error model, where

sin θi =
kek
kopk = kωi�p�Bi�p − oi�k: �4�

Thus, the cost function is unbiased for all of the points lying
on the same observational vector, regardless of the depth about
the 3D point to be estimated. Besides, sin θi is considered as a
close approximation to exact angular error θi (as shown in Fig. 1)
when obtaining an accurate 3D point estimation. Compared to
the optimization problems in terms of the L2-norm image repro-
jection error, this optimization model is more robust for multi-
ple triangulation when encountering fisheye or omnidirectional
cameras.
To minimize the unbiased N view triangulation problem in

Eq. (2), its gradient ∇e�p� can be derived as

∇e�p� = 2
XN
i=1

fω2
i �p��p − oi�T �Bi − ei�p��Ig: (5)

Thus, the target 3D point p∗ is derived from ∇e�p∗� = 0,
resulting in the following equation:Fig. 1. Geometric indication of multi-view triangulation.
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�XN
i=1

ω2
i �p∗�Bi

�
p∗ =

XN
i=1

�ω2
i �p∗�Bioi � ω2

i �p∗�ei�p∗��p∗ − oi��:

(6)

In most SfM or SLAM applications, it is well known that tem-
poral triangulation is a repeated work when new 2D observa-
tions are extracted from incoming images. More exactly, the
3D scene point may be triangulated in the first few images,
and then these available 3D points would be applied to estimate
the pose of a new coming image by perspective-n-point
(PnP)[26], followed by more scene points with triangulation
operations repeatedly. During these processes, INT is carried
out with the feature track lasting for many frames with the same
3D point.
To address the large-scale and sequential image situations, an

efficient INT is expected for multiple-view reconstruction based
on the initial 3D point estimation. Fortunately, based on the ini-
tial estimation in Eq. (1), the next 3D point pn can be propagated
based on the former pn−1 when encountering sequential feature
tracks without iteration, where

pn =
�XN

i=1

ω2
i �pn−1�Bi

�−1 XN
i=1

�ω2
i �pn−1�Bioi

� ω2
i �pn−1�ei�pn−1��pn−1 − oi��: (7)

It has been confirmed that the achievable reconstruction error
decays quadratically as more views are added to the system[13],
and thus INT would improve the accuracy of the 3D scene with
more observations. Besides, to bound the accumulation of
propagation error during INT, an iteration-limited INT
(ININT) is also proposed to achieve a more accurate 3D location
estimation based on the propagated result. As depicted in
Eq. (8), pININT is derived from the INT result pINT, and the iter-
ation operations continue until the given tolerance ϵININT is sat-
isfied:

�
pININT =

hP
N
i=1 ω

2
i �pINT�Bi

i−1 PN
i=1�ω2

i �pINT�Bioi � ω2
i �pINT�ei�pINT��pINT − oi��

kpININT − pINTk ≤ ϵININT
: �8�

In addition to the subsequent INT, the propagation-based
theme is applied when more observations of the same 3D point
arrived based on a reliable initial estimation. Increasing obser-
vational information will further optimize the existing triangu-
lation results[13]. Therefore, the proposed INT (ININT) method
inherits the convergence property of the unbiased midpoint tri-
angulation method by propagating the current image
observation.

4. Experiments

Experimental results are presented to validate the accuracy and
efficiency of the proposed methods. The other four benchmarks

of multiple triangulation methods are compared. The first one is
the native multiple-view middle point (MVMP) method; it is
currently the fastest method for multiple-view triangulation,
though it is labeled as inaccurate. The second method is the
unbiased midpoint method (IRMP)[24]. The third one is consid-
ered a benchmark by minimizing the cost function of Eq. (2)
using the naive Newton (NN) method. The fourth method is
the gradient-based minimization of the reprojection errors,
which is abbreviated as the standard gradient minimization of
the reprojection errors (GMREs)[14] and popularly used in the
recent state-of-the-art SLAM system. All of the experiments
are carried out using MATLAB on a single thread on an Intel
i7-8550U CPU at 1.80 GHz with 8G memory.

4.1. Experiments on synthetic data

In the synthetic dataset, the same camera calibration parameters
are used with an image size of 1024 × 1024 pixels and a focal
length of 400 pixels. Four scenarios for multiple-view INT are
simulated.

• Type A: The cameras and the 3D points are randomly dis-
tributed, as shown in Fig. 2(a). This synthesizes large-scale
3D reconstruction with images from different localizations.

• Type B: The camera moves along a curved trajectory with
continuous triangulation, as shown in Fig. 2(b). It can sim-
ulate a robot that explores freely with an unpredicted
landmark.

• Type C: The camera moves on a circle around the 3D
points, as shown in Fig. 2(c). This can be seen as 3D
reconstruction with a rotating platform.

• Type D: The camera moves along a curved trajectory
towards the 3D scene, as shown in Fig. 2(d). This simulates
the INT when the robot moves toward a target.

As illustrated in Fig. 2, 100 cameras and 1000 3D points are
generated as different synthetic scenarios. Then, these 3D points
are projected back to the image planes with the calibrated cam-
era matrix, corrupting by Gaussian noise with a 5 pixel covari-
ance. Based on the initialization from unbiased temporal
triangulation, the INT problem can be deduced with a successive
coming image until all of the sequential images are processed.
To perform a quantitative evaluation on the proposed propa-

gation-based INT (ININT) method, MVMP, IRMP, NN, and
GMRE are applied to perform incremental multiple-view tri-
angulation, respectively. During the INT process, these four
compared methods carry out the 3D point estimation repeatedly
when a new feature observation arrives, lacking the use of the
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previous triangulated results. In contrast, the proposed INT
method considers the consequence of the unbiased temporal tri-
angulation as the seed point, and then only the propagation is
executed when encountering a more featured track. It is known
that the accuracy of the 3D point is proportional to the number
of its observations, and thus the last estimated 3D point with all
of the observations is deemed as the most accurate one.
Therefore, these 3D points derived from all their observations
are projected back to the image planes again to compute the
mean 2D reprojection errors. Moreover, the mean 3D errors,
the Euclidean distances between generated 3D points with the
triangulated ones, are also taken into consideration.
Experimental results are illustrated in Table 1; because itera-

tion is avoided when new observations are added to the INT, the
propagation-based INT method is always the fast one.
Moreover, both the 3D and 2D errors on different synthetic
datasets derived from the proposed INT are superior to the clas-
sic MVMP method. Although the seed point of the INT is
derived from the unbiased temporal triangulation IRMP, the
final 3D results after recursive propagations are close to the con-
tinuous IRMP. Compared to the proposed INT method, the
GMREmethod can obtain slightly better triangulation accuracy,
but it takes an enormous amount of runtime. We also find that
the accuracy performances of IRMP and NN methods in INT

scenarios are almost the same except the runtime, which is also
consistent with our previous convergence analysis.
In addition to INT, the ININT method based on a few itera-

tions is applied after the propagated 3D point. Thus, the runtime
is a bit longer than the INTmethod with a superior 3D accuracy.
Both the proposed INT and ININT methods can balance the
runtime and accuracy in large-scale INTs. The experimental
results also demonstrate the convergence ability of the proposed
method in different situations.
For further verification of the robustness to varied noises, dif-

ferent Gaussian noise levels are generated to corrupt the 2D
observations. Based on the Type D dataset, 2, 5, and 8 pixels
covariances are simulated, respectively, while different 3D
points are generated, and the performance of different INTs
is illustrated in Fig. 3. It is easy to find that the proposed INT
(ININT)method is faster than all othermethods while obtaining
comparable 3D and 2D accuracy, except for the inaccurate
MVMP method.
Compared to the previous synthetic dataset Types A, B, and

C, the superior performance on the runtime is obvious because
the number of feature tracks during INT is large in the Type D
dataset. The results also illustrate that the proposed INT
(ININT) methods can provide an alternative for large-
scale INTs.

Table 1. Comparisons between Different Incremental Triangulation Performances.

Method

Type A Type B Type C

Time (s) 3D Error (m) 2D Error (pixels) Time (s) 3D Error (m) 2D Error (pixels) Time (s) 3D Error (m) 2D Error (pixels)

MVMP 1.06 0.0192 5.1115 2.45 0.0352 5.0493 2.14 0.0292 4.9511

IRMP 4.01 0.0139 4.7698 11.76 0.0303 4.9635 8.41 0.0251 4.8888

INT 0.68 0.0146 4.7955 0.91 0.0312 4.9649 1.08 0.0258 4.8901

ININT 0.98 0.0145 4.7936 1.45 0.0307 4.9537 1.62 0.0252 4.8895

NN 6.51 0.0139 4.7698 22.60 0.0303 4.9635 14.07 0.0251 4.8888

GMRE 7.08 0.0124 4.7059 22.10 0.0272 4.9621 15.61 0.0237 4.8680

Fig. 2. Four types of synthetic triangulation instances. (a) Type A: cameras and 3D points are randomly distributed; (b) Type B: the camera moves along a curved
trajectory around 3D points; (c) Type C: the camera moves on a circle while 3D points are located at the center; (d) Type D: the camera moves along a curved
trajectory towards the 3D scene.
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In addition to the efficiency and accuracy evaluation of the
proposed method, the convergence performance during INT
is verified in this section, where the 3D locations of the synthetic
points are assumed as the ground truth, and INT is carried out
when new images arrive one by one. Other methods, such as
MVMP, IRMP, NN, and GMRE, are also applied to perform
the multiple-view triangulation repeatedly after collecting all
of the observation vectors.

Due to the length of the feature track for every 3D point being
varied during INT, the overall convergence performance of the
INT (ININT) method is characterized with the percentage of the
views regardless of the number of views, where the total number
of the feature track is seen as the 100%, and the mean 3D errors
along with INT are calculated with the mean 3D error. Given
different synthetic datasets, the results of INT are depicted in
Fig. 4. It is easy to find that all the triangulation methods can

Fig. 3. Time and accuracy analysis with different noise levels on Type D synthetic data. (a), (b), and (c) are the results of the time, 3D error, and 2D error when the
Gaussian covariance is set as 2 pixels; (d), (e), and (f) are the results of the time, 3D error, and 2D error when the Gaussian covariance is set as 5 pixels; (g), (h), and
(i) are the results of the time, 3D error, and 2D error when the Gaussian covariance is set as 8 pixels.

Fig. 4. Overall convergence of INT with different datasets. (a) Convergence curve of Type A dataset; (b) convergence curve of Type B dataset; (c) convergence
curve of Type C dataset; (d) convergence curve of Type D dataset.
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achieve a higher 3D accuracy with more increased feature obser-
vations, and the achievable 3D error seemly decays quadratically
as more views are added to the system[13]. Compared to other
methods (MVMP, IRMP, NN, and GMRE), by collecting all
of the observations of the 3D points, the proposed propaga-
tion-based INT (ININT) with a recursive update about the cur-
rent observation also achieves similar convergence performance.

4.2. Experiments on real data

We also evaluate our INTmethod by the publicly available large-
scale dataset[27]. During the experiments, more views are thus
added to the system one by one after initialization, and then
the performance of the different methods with the real datasets
is illustrated in Table 2 and Fig. 5. The results show that the pro-
posed INT (ININT) is more efficient than the other methods.
Even compared to the inaccurate MVMP, the runtime of INT
has a comparative advantage. In addition, the 3D errors of
the scene points are also calculated to illustrate the accuracy per-
formance of the proposed methods. For convenient evaluation,
the 3D point locations provided by the dataset are considered as
the ground truth. It is also obvious to find that the proposed INT
(ININT) can approach a reliable triangulation performance dur-
ing INT.

5. Conclusion

An efficient INT method based on propagation for sequential
multiple views is proposed. Instead of collecting all of the obser-
vations of the 3D point to be located, the proposed INT method

only updates the observations of the current view, greatly out-
performing the current popular L2-norm triangulation method
in processing time. Besides, based on the result of INT as an ini-
tial value, a novel ININTmethodwith few iterations is derived to
obtain a better INT accuracy. Experimental results are presented
in detail, which validate that the proposed method is more effi-
cient while achieving comparable accuracy in INT. Nevertheless,
as a two-step L2-norm-based triangulationmethod, the accuracy
of the proposed method needs reliable initial 3D point estima-
tion. The proposed method can be integrated to accelerate other
multiple-view geometry problems, such as the camera pose esti-
mation derived from the PnP, providing high-efficiency 3D
reconstruction for robot localization and visual measurements,
which is also our future work.
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