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Three-dimensional (3D) refractive index (RI) distribution is important to reveal the object’s inner structure. We implemented
terahertz (THz) diffraction tomography with a continuous-wave single-frequency THz source for measuring 3D RI maps. The
off-axis holographic interference configuration was employed to obtain the quantitative scattered field of the object under
each rotation angle. The 3D reconstruction algorithm adopted the filtered backpropagation method, which can theoretically
calculate the exact scattering potential from the measured scattered field. Based on the Rytov approximation, the 3D RI
distribution of polystyrene foam spheres was achieved with high fidelity, which verified the feasibility of the proposed
method.
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1. Introduction

Terahertz (THz) waves have high penetration through non-
metallic and non-polar materials, and they have low photon
energy, so are safer for biological targets and human
operators. Because of these special properties, both the two-
dimensional (2D) and three-dimensional (3D) THz imaging
techniques have gained widespread attention in biomedical
fields[1] and nondestructive testing[2], among others[3–7]. The
3D THz imaging can reveal the inner structures of the object,
and, especially, the refractive index (RI) distributions usually
offer higher contrast and more plentiful information.
A number of methods for 3D imaging with THz radiation

have also been proposed and demonstrated. One ofmainmodal-
ities is the THz computed tomography (CT)[5], which recon-
structs the 3D absorption coefficient and RI distributions of
the sample from the measured intensity and phase distributions
of various projection angles. THz CT is based on a geometrical
straight-line model of the propagation of radiation, which
assumes that diffraction effects and Fresnel losses can be
neglected. The Fourier slice theorem is the central theorem,
which leads to the well-known 3D reconstruction algorithm,
the filtered backprojection algorithm (FBPJ). The other iterative
reconstruction algorithms, such as the simultaneous algebraic

reconstruction technique (SART)[6], were developed. The
improved THz CT systems with high scanning speed design,
extended depth of field[7], and RI matching method[8] have been
proposed. However, the THz CT is not proper for 3D imaging of
the sample with a fine structure, like high-accuracy 3D RI mea-
surement, and the 3D reconstruction results would be seriously
degraded[9,10] because of the diffraction effect caused by the
large wavelength of the THz wave. For conventional CT systems,
the resolution is related to the size of the focused beam, which is
larger than 1 mm in THz waves. Also, it is hard to improve the
imaging lateral resolution.
Diffraction tomography (DT) is one of the common tomog-

raphy methods that accounts for the diffraction effect[11,12] and
can determine simultaneously the 3D absorption coefficient and
RI distributions of the sample with high accuracy by using the
measurement of the diffracted wave field. In the visible light
domain, presently, the optical DT (ODT) has become an im-
portant 3D imaging method for non-invasive observation of
biomedical samples[13,14] and structural inspection of micro-
optical elements[15,16]. In the THz domain, Wang et al.[17,18]

in 2003 reported the first implementation of DT by employing
a THz time domain spectroscopy (TDS) system. In their work,
the sample was an object composed of three rectangular

Vol. 19, No. 12 | December 2021

© 2021 Chinese Optics Letters 123701-1 Chinese Optics Letters 19(12), 123701 (2021)

mailto:zhaojie@bjut.edu.cn
https://doi.org/10.3788/COL202119.123701


polyethylene cylinders. The 2D THz pattern was formed on an
electro-optic ZnTe crystal, which was transferred by the visible
probe light and then recorded by a CCD detector. The Fourier
diffraction theorem (FDT) and interpolation in the spatial fre-
quency domain were used to reconstruct the spatial object func-
tion. This 3D reconstruction algorithm is denoted as a frequency
domain interpolation (FDI) algorithm, which is often used.
However, the signal complex interpolation for the 3D spatial
spectrum data led to artifacts in the reconstructed RI distribu-
tions. Thus, the reconstructed results were not very good with
noise background. Besides, the system was rather complicated,
and it needed to precisely control the CCD image acquisition
and THz beam on–off time sequence. Moreover, the above work
also assumes that the object is dispersionless. Therefore, in order
to meet the practical requirements for 3D imaging, the opti-
mized THz DT with a simple configuration still needs further
development, including the direct intensity recording of a
THz wave by the 2D array detectors, the use of single-frequency
continuous-wave (CW) THz sources, and more effective 3D
reconstruction algorithms. Recently, the progress on the wide-
field THz coherent imaging techniques makes the exploration
very possible, such as THz digital holography[19,20] and ptychog-
raphy[21], which can give, simultaneously, the 2D quantitative
amplitude and phase distributions of the sample.
In this Letter, we proposed a CW-THz DT system by using a

coherent single-frequency THz laser and the array detector to
directly record the off-axis digital hologram. The setup is simple
and easy to operate. By rotating the object, the 2D scattered
fields of the object at each rotation angle can be obtained by
the digital holographic reconstruction method. With regard to
the 3D reconstruction algorithm of the THz DT, to the best
of our knowledge, the filtered backpropagation (FBPP) method
is first introduced to produce the volume data in the space
domain and to achieve high-quality 3D RI measurement.
Compared with the regular FDI algorithm, there is no need to
do complex interpolation in the Fourier domain, and the exper-
imental results demonstrate the validity of the method with high
fidelity.

2. Principle of the Filtered Backpropagation Method

On the assumption of the scalar wave diffraction theorem, con-
sider a monochromatic plane wave u0� r

⇀� = exp�K
⇀

m · r
⇀� inci-

dent upon a scattering object, whose physical quantity is

termed the scattering potential f � r⇀�. The resultant total field

u� r⇀� [incident field u0� r
⇀� plus scattered field us� r

⇀�] satisfies
the inhomogeneous Helmholtz equation as[11]

�∇2 � k20�u2� r
⇀� = −f � r⇀�u� r⇀�, (1)

and the scattering potential f � r⇀� is defined by

f � r⇀� = k20

��
n� r⇀�
n0

�
2
− 1

�
, (2)

where r
⇀
= �x, y, z� is the 3D spatial vector at the object space,

K
⇀

m = �kmx, kmy , kmz� is the spatial frequency vector of the inci-
dent fields, k0 = jK

⇀

mj is the wave number in a vacuum, n0 ≈ 1 is

the RI value of air, and n� r⇀� is the RI distributions of the object.
In order to solve Eq. (1), we can make use of Green’s function

and apply the Rytov approximation, so the scattered field can
be obtained as[22]

us� r
⇀� ≈ uRytov� r

⇀� = u0� r
⇀� ln �u� r⇀�=u0� r

⇀��: (3)

Then, a direct relation between the Fourier transform (FT) of
the scattered field and the FT of the scattering potential of the
object can be deduced, which is commonly called the FDT[23]:

F̃�K
⇀

D − K
⇀

m� = −
���
2
π

r
ikDzŨs�kDx ,kDy ;ϕ0�, (4)

where F̃�K
⇀

D − K
⇀

m� is the 3D FT of the scattering potential f � r⇀�,
Ũs�kDx ,kDy ;ϕ0� is the 2D FT of the scattered wave us�x,y;ϕ0�
with the rotation angle ϕ0, and K

⇀

D = �kDx ,kDy ,kDz� is the spatial
frequency vector of scattered field, here, k2Dx � k2Dy � k2Dz = k20.

It states that the 2D FT of the filtered data function is equal

to the 3D FT of f � r⇀� evaluated over a semispherical surface

oriented at an angle ϕ0 in the 3D Fourier space of f � r⇀�.
To reconstruct exact f � r⇀� directly in the space domain[23–25],

Devaney developed the FBPP algorithm based on Eq. (4) when
the frequency domain is represented, by the polar coordinate,
and the rotation coordinate transformation is performed. For
simplicity, we only consider the rotation of the sample along
one axis, which is denoted as the y axis here. The scattering
potential can be reconstructed as

f � r⇀� = −ik0
4π2

Z
2π

0

Z
k0

−k0

Z
k0

−k0
jkDx

jŨs�kDx
,kDy ;ϕ0�

× exp

�
izϕ0

� ������������������������������
k20 − k2Dx − k2Dy

q
− k0

��

× exp�i�kDxxϕ0
� kDyyϕ0

��dkDxdkDydϕ0, (5)

where

xϕ0
= x cos ϕ0 � z sin ϕ0, (6a)

yϕ0
= y, (6b)

and

zϕ0
= −x sin ϕ0 � z cos ϕ0: (6c)

In Eq. (5), there are two exponential terms inside the integral
formula. The first one is a transfer function, which is depth-
dependent due to the parameter zϕ0. The second one is a factor
to make the whole integral form a 2D inverse FT over kDx
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and kDy . The whole integral formula can be interpreted as propa-
gating the scattered field along the zϕ0 direction, which is similar
to the diffraction propagation. In order to implement the
numerical calculation of Eq. (5), the scattered field can be propa-
gated into N sections in the space containing the object, and the
interval between adjacent sections is denoted asΔzϕ0, which can
be flexibly set. Thus, volume data in the space domain is pro-
duced, and the scale of the depth is N · Δzϕ0. Finally, the trans-
formation of coordinates, illustrated as Eq. (6), is performed for
3D volumes, which are then added to the reconstruction volume
in the sum over all rotation angles ϕ0. Correspondingly, the lat-
eral and axial resolutions of the DT system are related to the res-
olution of the complex amplitude distribution of a single
projection and the number of projections[26]. Under the proper
number of projections, the former factor usually plays an impor-
tant role.
It is noted that the FBPP algorithm generally requires scat-

tered data measured from view angles in [0,2π] for exact
reconstruction of a complex-valued object function. Compared
to the direct linear inversion (the FDI algorithm) based on
Eq. (4), there is no need to do the complex interpolation process-
ing in the frequency domain, which will cause large computa-
tional errors and produce artifacts. The error-prone frequency
interpolation can be avoided by applying the FBPP algorithm,
which is theoretically equivalent to the FDI.
Practically, in order to achieve the complex diffracted fields

(including the amplitude and phase distributions) of the object
for one illumination angle ϕ0, the off-axis digital holographic or
the phase-shifting interferometry method can be employed. The
off-axis digital holographic method is used in this Letter. The
filtering frequency spectrum is applied to the digital holograms
to obtain u�x,y;ϕ0� and u0�x,y;ϕ0�, which are with and without
the object. The scattered field can be calculated by Eq. (3).

3. Experimental Setup and Results

An experimental CW THz DT system based on off-axis Fresnel
digital holography was built as depicted in Fig. 1 to collect the
scattered field of the sample with different rotation angles. The
THz source was an optically pumped far-IR gas laser (295-FIRL;
Edinburgh Instruments Ltd., UK) with a central wavelength of
118.83 μm (2.52 THz) and a maximum power of 500 mW. The
emitted THz beam was expanded and collimated by two off-axis
parabolic mirrors (PM1, f 1 = 50.8mm; PM2, f 2 = 152.4mm)
and then divided into the object beam and the reference beam
by a beam splitter (BS). The object was attached to ametal holder
for fixing on a rotational stage (PRMTZ8/M; Thorlabs Inc.,
USA). The interference fringes generated by the two beams
formed the hologram, which was recorded by a pyroelectric
detector (Pyrocam IV, pixel size 320 × 320, pixel pitch
80 μm × 80 μm). The distance from the object to the detector
was d = 62.9mm. To enhance the contrast of the interference
fringes, 500 frames were recorded at a chopping frequency of
50Hz and accumulated via Gaussian fitting. In this experimental
setup, the theoretical resolutions are about 0.3 mm.

To validate the proposed method, we first used a single poly-
styrene (PS) foam sphere with a diameter of 7.44 mm. The RI
of the PS foam was ∼1.0169 at 2.52 THz, as measured by the
THz-TDS system (TAS7400SU; Advantest, Japan). In the ex-
periments, the sample was rotated gradually by 360° at angular
intervals of 3°, and thus 120 holograms with the object were
recorded successively, followed by one background hologram
without the object. Figures 2(a1) and 2(b1) show the holograms
with and without the object, respectively, at the rotation angle of
0°, and Figs. 2(c1) and 2(d1) show the reconstructed amplitude
and wrapped phase images of Fig. 2(a1). The least-squares
method is used to obtain the unwrapped phase image[27], then
a double exposure is used to compensate for phase aberra-
tion[28], and the result is shown in Fig. 2(a2). Figures 2(a2)–
2(d2) show the reconstructed phase images at 0°, 45°, 90°,
and 180°, respectively, and Fig. 2(e1) shows the phase profiles
of the dotted lines in Figs. 2(a2)–2(d2). As can be seen, the maxi-
mum phase values of the different angles are shifted along the
X axis. This misalignment exists because it is difficult to pre-
cisely adjust the gravity center of the sample to the rotational

Fig. 1. Schematic of the experimental configuration of continuous-wave tera-
hertz diffraction tomography (CW THz DT). PM1 and PM2, off-axis parabolic
mirrors; BS, THz beam splitter; M, gold-coated mirror; RS, rotational stage.

Fig. 2. Reconstructed results of digital holography for single polystyrene (PS)
foam sphere: (a1), (b1) holograms with and without the object at 0°; (c1),
(d1) reconstructed amplitude and wrapped phase images of (a1); (a2)–(d2)
reconstructed phase images at 0°, 45°, 90°, and 180°; (e1) phase profiles of
the black dotted line in (a2)–(d2); (e2) result of (e1) after alignment.
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axis of the stage. To compensate for this mechanical error,
a cross-correlation coefficient was used to align the phase pro-
files. After alignment, the maximum phase values are nearly in
the same position along the X axis, as shown in Fig. 2(e2). The
mechanical error mentioned above also results in axial shifting
of the sample when rotating, so the reconstructed complex
images of digital holography are defocused to different extents.
To improve this, the auto-focusing method based on the
Brenner function as the criterion function is applied to make
them with a sharp boundary at each rotation angle[29].
The reconstructed complex amplitudes by digital holography

with various angles were then processed to obtain the scattered
field. The scattering potential distributions of the sample were
reconstructed by using Eq. (5), where Δzϕ0 is set to be 80 μm,
and N is equal to 320. The RI distributions were finally achieved
by using Eq. (2). In our experiment, the sample was supported by
a metal rod whose large RI led to incorrect reconstructed values
in these areas, so the support-rod part has been removed from
the reconstructed 3D RI results below.
Figures 3(a1)–3(c1) are the reconstructed results by the FDI

method, showing the obtained RI distributions at cross sections
x–y, y–z, and x–z, respectively. It is seen that there is some arti-
facts error inside, especially in the background region, and the
fluctuation of the value is relatively serious. The reconstructed
RI distributions by the FBPP method are shown in Figs. 3(a2)–
3(c2), which show much-improved fidelity of the reconstructed
RI tomograms. Figure 3(d) shows the differences of the RI
profiles of the PS foam sphere between the results obtained

by the FBPP method and the FDI method. The red line repre-
sents the ideal RI value of the PS foam material, which is mea-
sured by the THz-TDS system. As can be seen, the RI value
obtained by the FBPP method is more accurate, where the aver-
age value is ∼1.0153, and the error is only 0.16%, thereby veri-
fying the effectiveness of the proposed method. Furthermore,
the average diameter of the reconstructed foam sphere is
∼7.44mm, which corresponds to a reconstruction error of 0.6%
compared with the true value. We can also analyze the
reconstruction quality of the FBPP and FDI methods from
the view of 3D Fourier space, as shown in Fig. 4. Figures 4(a)
and 4(b) are the amplitude of the spectrum distribution of FDI
and FBPP on the logarithmic scale along the f x–f y , f x–f z ,

and f y–f z cross sections, respectively. For the FDI method,

the number of missing spectrum points produced by the
reconstruction algorithm ismore than that of FBPP, as indicated
by the green arrows. It leads to the reconstructed RI distribution
being worse, as shown in Figs. 3(a1)–3(c1). Meanwhile, both
FBPP and FDI have the same missing spectrum points caused
by the “missing apple core” problem, as indicated by the red
arrows.
To demonstrate further the applicability of THz DT on non-

axisymmetric samples, two glued PS foam spheres were placed
horizontally on the rotary stage, and then the sample was rotated
around the gravity center of one sphere to obtain the scattered
field with various rotation angles. The reconstructed RI distribu-
tions of the foam spheres at cross sections x–y, y–z, and x–z and
the 3D distributions are shown in Figs. 5(a)–5(d), respectively.
From Visualization 1, the 3D RI distributions are presented vis-
ually. The average RI value of the two reconstructed foam
spheres is ∼1.0126, and the difference is 0.42% compared with
the value obtained by the THz-TDS system. Note that the RI dis-
tributions are not as uniform compared with the previous single
foam sphere. There are some fringe patterns. Because multiple
scattering exists when the THz beam propagates through the
two foam spheres, the Rytov approximation is not well satisfied,
and the reconstruction error is increased. To solve this, one
possible way is to build the forward propagation model includ-
ing the multiple scattering effects and apply an iterative DT
reconstruction algorithm to improve the quality of 3D recon-
structed RI distributions[30,31].

Fig. 3. Reconstructed refractive index (RI) profiles of DT for a single foam
sphere: (a1)–(c1), (a2)–(c2) 3D RI profiles at cross sections x–y, y–z, and x–z
by FDI and FBPP algorithm, respectively; (d) RI profiles of the red dotted line
in (c1) and (c2), and ideal values obtained by the THz-TDS system.

Fig.4. Amplitude of the spectrum distribution of (a) FDI and (b) FBPP on the
logarithmic scale along the fx–fy, fx–fz, and fy–fz cross sections, respectively.
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4. Summary and Discussion

In summary, we have realized CW THz DT combined with dig-
ital holography, and the digital holograms are recorded directly
by the array detector at various angles through rotating the
samples. The configuration is simple and easy to operate. With
regard to the 3D reconstruction algorithm, the FBPP algorithm
is adopted to achieve 3D RI distributions of the PS foam spheres.
The average RI value has only 0.16% difference from the RI value
measured by the THz-TDS system. The reconstructed results
have high fidelity compared with results obtained by the FDI
algorithm. It verifies the feasibility of the proposed method.
Note that in the reconstructed RI tomograms in Figs. 3 and 5,

some values are quite different from their surroundings along
the Y axis, which is the result of the “missing apple core” prob-
lem. It can be improved by the iterative algorithm with non-
negative constraints. Furthermore, to promote THz DT further,
RImatching or themultiple scattering non-linearmodelmust be
applied to reconstruct high-RI samples. Our view is that THzDT
can be an effective method for non-destructive testing and quan-
titative measurement of the complex RI of complex samples in
the future, which can be combined with other THz wide-field
phase-contrast imaging methods.
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