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We investigate the dynamics of a system that consists of ultra-cold three-level atoms interacting with radiation fields. We
derive the analytical expressions for the population dynamics of the system, particularly, in the presence and absence of
nonlinear collisions by considering the rotating wave approximation (RWA). We also reanalyze the dynamics of the system
beyond RWA and obtain the state vector of the system to study and compare the time behavior of population inversion. Our
results show that the system undergoes two pure quantum phenomena, i.e., the collapse–revival and macroscopic quantum
self-trapping due to nonlinear collisional interactions. The occurrence of such phenomena strongly depends on the number
of atoms in the system and also the ratio of interaction strengths in the considered system. Finally, we show that the result
of the perturbed time evolution operator up to the second-order is in agreement with the numerical solution of the
Schrödinger equation. The results presented in the paper may be useful for the design of devices that produce a coherent
beam of bosonic atoms known as an atom laser.
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1. Introduction

Nowadays a great deal of attention has been focused on the
design of a device that produces a coherent beam of bosonic
atoms known as an atom laser. Such devices are applicable in
atom optics for various purposes, i.e., atom lithography, nano
fabrication, and fundamental tests of quantum mechanics such
as those involving atom interferometry[1]. The experimental
realization of the Bose–Einstein condensate (BEC) results in
the fast progress of atom optics due to the fact that a macro-
scopic number of atoms can be condensed in the ground state
of an atomic trap that occupies a single quantum-mechanical
state[2,3]. One of the most challenging problems in real many-
particle systems is the coherent control of the interaction
between the relevant particles.
The mean spacing between bosons is ten times greater than

the range of inter-atomic forces due to the diluted nature of most
BECs. In a BEC, the scattering lengthmay possess either positive
or negative values. The sign and magnitude of scattering length
are of major importance, and they considerably affect the
dynamics. A BEC with negative scattering length is composed
of atoms with attractive interactions and implies the presence
of a kind of wave solution called a bright soliton, which is a local-
ized nonlinear wave against a zero background. On the other
hand, a BEC with positive scattering length is repulsive and

supports a different wave solution called a dark soliton. A dark
soliton is also a localized nonlinear wave, but it is named
dark because its magnitude implies a deficiency of the density
with respect to a non-zero bulk value[4]. The scattering
length depends on the atom species, but both the sign and
magnitude may be manipulated via Feshbach resonance[5].
Experimentalists are able to manipulate atomic collisions and
change the sign and strength of atomic interactions by tuning
an external magnetic (or optical and electric) field in the vicinity
of a Feshbach resonance[6,7]. Therefore, atomic BECs play the
role of ideal experimental systems in different fields of quantum
optics and particularly in continuous variable quantum infor-
mation processing and teleportation[8,9]. The so-called macro-
scopic quantum self-trapping (MQST) is a phenomenon that
manifests itself as a localization of most of particles in a particu-
lar space (region or quantum state) of a system[10–14]. The
appearance of MQST becomes more pronounced with growing
nonlinearity. Moreover, this effect plays an important role in the
dynamics of condensates in periodic potentials and results in the
formation of self-trapped or truncated gap states[15].
Based on the above-mentioned rich and interesting studies,

we are motivated to investigate the effect of collisional interac-
tion on the dynamics of ultra-cold Bosonic atoms and try to find
under which conditions the pure quantum phenomena such as
collapse–revival and MQST may take place in the dynamical
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evolution of a system. The results show that our system shows a
new kind of MQST, wherein the atoms mostly occupy a certain
quantum state. Hereafter, we refer to this phenomenon as the
MQST state (MQSTS). The occurrence of MQSTS, collapse–
revival phenomena, and so their patterns strongly depend on
the effect of nonlinear collisions and also the number of atoms
in the system.
The remaining parts of this paper are organized as follows. In

the next section, the model Hamiltonian and dynamics of the
system are analyzed based on the Heisenberg approach. In sec-
tion 3, the analytical expressions of population inversion are
computed, considering two cases of number and coherent initial
states, respectively. We also reanalyze the dynamics of the sys-
tem via the time evolution operator in the absence and presence
of inter-atomic collisions in this section. Our numerical results
and discussions are presented in section 4. Finally, we summa-
rize the results in the last section.

2. System and Its Model Hamiltonian

We consider a theoretical scheme to describe the interaction of a
cloud of ultra-cold atoms with two classical radiation fields. The
atoms possess three internal levels j1i, j2i, and j3i in the Λ con-
figuration, where the two lower states j1i and j2i are coupled to
the upper state j3iwith two classical laser fields of frequenciesω1

and ω2, respectively. Usually, the atoms are confined in a three-
dimensional isotropic harmonic trapping potential. Besides that,
we suppose that the atoms interact with each other via elastic
two-body collisions. Indeed, the collisions may be described
via the δ-function potentials Vij�r − r 0� = Uijδ�r − r 0�, where
Uij = 4πℏ2aij=m with m and aij, respectively, denoting the
atomic mass and the s-wave scattering length between atoms
in states i and j. A condensate consisting of sodium atoms with
appropriate internal levels interacting with external laser fields is
a good experimental candidate for our considered system[7,16,17].
As shown in Fig. 1, only the transitions j1i ↔ j3i and j2i ↔ j3i
are allowed. On the other hand, the transition j1i ↔ j2i is
directly forbidden, but may take place through j1i ↔ j3i ↔
j2i. In real physical systems, the confined cloud of BEC atoms

is magnetically compressed and evaporatively cooled to a tem-
perature where there is no noticeable non-condensed atomic
fraction, i.e., less than 0.4 of the BEC transition temperature[18].
Thus, the results at zero temperature, like the one we obtain in
this work, are valid for such experimental situations as well.
Indeed, at very low temperatures, the s-wave scattering length
can be used as ameasure for the strength of the atom-atom inter-
action. Under typical experimental conditions, this interaction is
weak and, hence, can be treated in terms of a mean field.
However, when the scattering length is large or the density is
high, the mean-field approximation breaks down. In this colli-
sional (hydrodynamic) regime, the effects of the interactions
such as quantum depletion or shifts in the frequencies of the
elementary excitations become large. Therefore, it is of great
interest to study condensates close to or in the collisional regime.
The scattering length and thus the interactions among the atoms
can be tuned by means of a Feshbach resonance; however, in the
vicinity of Feshbach resonances, the increase of the cross section
for elastic collisions is accompanied by a dramatic increase of
particle losses[19]. Also, the quantum depletion is always present
due to the interactions in the condensate. It should be noted that
the ground state quantum depletion contributes to the density of
atoms out of the condensate mode. Besides, the control of the
external potential is another essential experimental technique
in studying BEC. So far, various potentials have been imple-
mented in laboratories, including magnetic traps, optical
lattices, optical superlattices, double-well traps, and superposi-
tions of lattices or superlattices with magnetic traps[20]. The
shape and time variation of the external potential can be tuned
accurately and flexibly, which enables different nonlinear waves
and has been demonstrated in both experimental and theoretical
studies[6].
In practice, the collisional inter-atomic interactions, particle

loss, and quantum depletion control (and may limit) the density
of the BEC mode. In the present work that seeks the internal
dynamics of BEC atoms, increasing the number of atoms may
lead to the increase of the disorder (entropy). The increase of
entropy and the conservation principles constitute the basic
rules that govern the processes occurring in the universe.
Notice that the essence of BEC is the perfect alignment of
bosons[21]. Therefore, the entropy is themost important concept
in BEC, which affects its dynamics dramatically. The dynamics
of BEC atoms interacting with radiation fields at zero temper-
ature, where there are no thermally excited atoms and the quan-
tum depletion is negligible, can be described in the framework of
the second quantization by the following model Hamiltonian:

Ĥ =
X3
i=1

νib̂
†
i b̂i − �g1b̂†3b̂1e−iω1t � g2b̂

†
3b̂2e

−iω2t � h:c:�

�
X3
i=1

λib̂
†2

i b̂
2
i �

X3
i≠j

λijb̂
†
i b̂ib̂

†
j b̂j, (1)

where νi, b̂i, and b̂
†
i are, respectively, the frequency, annihilation,

and creation operators of BEC atoms in the states jii (i = 1, 2, 3).

Fig. 1. Three-level atoms are in a Λ configuration, and the classical
radiation fields have two different frequencies (right panel).
Experimentally, such atomic systems consist of a binary mixture
of BEC atoms, which are distributed in two hyperfine states and
are transferred between them by the action of radiation fields[18]

(left panel).
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The coupling constants g1 and g2 indicate the strengths of inter-
action between the BEC atoms and the classical radiation fields
as described above. In the case of a traveling classical field, the
explicit expression of coupling strengths can be written as
gk = εkμij=ℏ �k = 1,2�, where εk and μij denote the amplitude
of the classical field and the transition dipole-matrix element
between the different states jii and jji[22,23]. Also, λi and λij
(i, j = 1,2,3) denote the strengths of nonlinear collisional inter-
actions. The first line of Eq. (1) introduces the free Hamiltonians
of the three-level atoms, while the second and last lines of Eq. (1)
introduce the atom-field and collisional interactions in the sys-
tem, respectively.
It should be noted that the above Hamiltonian provides a rea-

sonably accurate picture for weak many-body interactions,
i.e., for a small number of condensed atoms. Indeed, for large
condensates, the mode functions of condensates are changed
due to the collision interactions, especially when the number
of atoms N satisfies Na ≫ r0, where a is a typical scattering
length, and r0 is a measure of the trap size. For instance, consid-
ering a large trap with the size r0 = 100m and the typical scat-
tering length a = 5 nm, the Hamiltonian (which is derived based
on the single-mode expansions of the atomic-field operators) is
applicable for N ≤ 20,000[17].
Anyway, based on Eq. (1), the time-independent Hamiltonian

in the interaction picture is given as follows:

ĤI = Δ1b̂
†
3b̂3 � �Δ1 − Δ2�b̂†2b̂2 − �g1b̂†3b̂1 � g2b̂

†
3b̂2 � h:c:�

�
X3
i=1

λib̂
†2

i b̂
2
i �

X3
i≠j

λijb̂
†
i b̂ib̂

†
j b̂j, (2)

whereΔ1 andΔ2 are the frequency detunings of atoms with two
respective classical laser beams. In the case of exact two-photon
resonance, i.e., Δ = Δ1 = Δ2, and also with large detuning con-
dition (Δ ≫ ν2 − ν1), one can adiabatically eliminate the
atomic-field operators corresponding to the internal upper state
j3i[24]. Indeed, the experimental atomic BEC contains a binary
mixture of ultra-cold atoms. The first realization of a binary
mixture of condensates was produced by Myatt et al.[25] via
overlapping the hyperfine levels jF = 1,mf = −1i and jF =
2,mf = 2i of 87Rb[25]. Also, Matthews et al.[18] considered an
ensemble of effective three-level atoms, where a virtual inter-
mediate state connects the hyperfine states via a pulse of micro-
wave radiation at a frequency slightly less than the ground state
hyperfine splitting of 87Rb (≃ 6.8 GHz) along with a 2 MHz RF
magnetic field. It should be noted that the virtual intermediate
state can be adiabatically eliminated.
Therefore, the realistic BEC atom can be described by the fol-

lowing interaction Hamiltonian, which describes the transfer of
atoms between two lower atomic states by the action of radiation
fields, which is schematically depicted in the left panel of Fig. 1:

ĤI = Ω1b̂
†
1b̂1 �Ω2b̂

†
2b̂2 � �geff b̂†2b̂1 � g*eff b̂

†
1b̂2�

� λ1b̂
†2

1 b̂
2
1 � λ12b̂

†
1b̂1b̂

†
2b̂2 � λ2b̂

†2

2 b̂
2
2, (3)

where we have defined Ω1 = −jg1j2=Δ, Ω2 = −jg2j2=Δ, and
geff = −g1g*2=Δ.
In order to obtain the dynamical evolution of the system, we

try to rewrite the Hamiltonian in Eq. (3) in terms of angular
momentum operators, which are defined as

Ĵ� = b̂†2b̂1, Ĵ− = b̂†1b̂2,

Ĵ x =
Ĵ� � Ĵ−

2
, Ĵ y =

Ĵ� − Ĵ−
2i

,

Ĵ z =
1
2
�b̂†2b̂2 − b̂†1b̂1�, (4)

and also N̂ = b̂†2b̂2 � b̂†1b̂1, which denotes the total number of
operators. Using the above operators, we arrive at the effective
Hamiltonian as

Ĥeff = �geff Ĵ� � g*eff Ĵ−� � �Ω2 − Ω1 � �N − 1��λ2 − λ1��Ĵ z
� �λ1 � λ2 − λ12�Ĵ2z , (5)

where the constant energy terms containing N̂ and N̂2 have been
removed[22]. Assuming real coupling constants G = 2jgeff j=
2jg*eff j, the simplified form of the effective Hamiltonian can be
expressed as follows:

Ĥeff = AĴz � 2BĴ2z � GĴx, (6)

where we have set A = �Ω2 − Ω1 � �N − 1��λ2 − λ1�� and
B = 1

2 �λ1 � λ2 − λ12�. Now, we intend to investigate the dynam-
ics of the system by considering two different initial conditions.
For simplicity, we assume A = 0, which can be realized by
adjusting the atomic frequency difference Ω2 −Ω1, the total
number of atomsN in the system, and the collisional interaction
constants, i.e., λ2 and λ1, all of which are experimentally acces-
sible. Also, the so-called RWA can be adapted whenever the Rabi
frequency G is larger than the frequency of the magnetic trap[26]

to provide a BEC system. Such physical conditions have previ-
ously been used to study the dynamical evolution of two-mode
BEC systems[27,28].

3. Dynamics of the System: Population Inversion

In this section, we study population inversion as a key quantity
to investigate the dynamics of our BEC system. This quantity is
usually used to extract the information of energy transfer
between atoms and photons, i.e., the internal dynamics of the
system. In this regard, we define the operators Ĵ1 = Ĵ z � iĴy
and Ĵ2 = Ĵ z − iĴy . Using the Heisenberg equation of motion

{˙̂Jl�t� = −i�Ĵ l�t�,ĤRWA�, where ĤRWA = −BĴ2x � GĴx}, the time
evolution of the mentioned operators are easily obtained as

Ĵ1�t� = ei�2BĴx�B−G�t Ĵ1�0�, Ĵ2�t� = ei�−2BĴx�B�G�t Ĵ2�0�: (7)

These relations can be used to study the dynamics of the sys-
tem. The population inversion of the system can be defined as
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W�t� = hΨ�0�jN̂2�t� − N̂1�t�jΨ�0�i
= hΨ�0�je−2iBĴxt Ĵ2�0�jΨ�0�iei�G�B�t � c:c, (8)

where we have used the relation 2Ĵ z�t� = b̂†2�t�b̂2�t� − b̂†1�t�b̂1�t�.
In the continuation, we consider two different kinds of initial
states for BEC atoms. As the first case, we consider that all atoms
populate the state j2i, which can be defined as a Fock number
state jNi, while state j1i is empty. Accordingly, the initial state of
the system can be written as j0,Ni, which is possible to be
expressed in terms of the angular momentum state jj,ji
with j = N=2.

3.1. Number state case

In order to obtain analytical expressions of population inver-
sion, we insert the initial state jj,ji in Eq. (8) and proceed as
follows:

W�t� = hj,jje−iπ2Ĵy e−2iBĴz t Ĵ�eiπ2Ĵ y jj,ji × ei�G�B�t � c:c

=
Xj

m=−j

Xj

m 0=−j
hj,jje−iπ2Ĵ y jj,mi × hj,mje−2iBĴz t Ĵ�jj,m 0i

× hj,m 0jeiπ2Ĵ y jj,jiei�G�B�t � c:c, (9)

where we have set

e−iAĴxt Ĵ2�0� = e−i
π
2Ĵy e−iAĴz t Ĵ��0�eiπ2Ĵ y :

Equation (9) can be simplified as

W�t� = 1
2N

ei�G�B�t
Xj

m=−j
�j�m�

�
2j

j�m

�
e−2iBmt � c:c: (10)

ForN = 2 and using Eq. (10), one can easily compute the pop-
ulation inversion as below,

W�t� = 1
22

ei�G�B�t
�
0

�
2

0

�
� 1

�
2

1

�
� 2

�
2

2

�
e−2iBt

�
�c:c

= 2 cos Bt cos Gt: (11)

Therefore, the analytical expression of population inversion
for a system containing N atoms with initial number state
can be obtained as

Wnum�t� = N�cos Bt�N−1 cos Gt, (12)

where G and B have been defined earlier. From the analytical
expression of population inversion in Eq. (12), we are able to
find a few prominent features. It should be noticed that popu-
lation inversion possesses two distinct factors. The first feature
may be attributed to its slow-varying factor. We expect that the
envelope function �cos Bt�N−1 results in the collapse–revival
phenomenon, while the oscillatory factor of Eq. (12) including
cos Gt implies the usual Rabi oscillation of frequency G. Also,

the MQSTS is another considerable feature that strongly
depends the total number of atoms in the system. For the sake
of simplicity of analysis, we consider a particular case wherein
G = B. If the number of atoms is even, the revival period is
π=B, and therefore population inversion always possesses posi-
tive values, i.e., hW�t�i ≠ 0, which demonstrates the occurrence
of MQSTS. On the other hand, whenever N is odd, the popula-
tion undergoes anti-revival. In this case, the revival period
becomes 2π=B. In general, the revival time can be tuned by
adjusting the ratio of strengths of interactions, i.e., G=B as well
as the total number of atoms in the system, N .

3.2. Coherent state case

As the second case, we replace the atomic number state with its
coherent counterpart. Now, we consider a two-mode standard
coherent state as

jΨ�0�i = jα,βi, jZi = e
−jZj2
2

X∞
j=0

Zj���
j!

p jji, Z = α,β, (13)

and follow the computation as

W�t� = hΨ�0�je−2iBĴxt Ĵ2�0�jΨ�0�iei�G�B�t � c:c: (14)

For the sake of simplicity, we exchange Ĵ x ↔ Ĵ z and also
Ĵ y → −Ĵ y , and rewrite Eq. (14) as below,

W�t� = hΨ�0�je−2iBĴz t Ĵ�jΨ�0�iei�G�B�t � c:c: (15)

Inserting Eq. (13) into Eq. (15) and after some simplifications,
we arrive at

W�t� = ei�G�B�tαβ*e−jαj
2−jβj2 ×

X∞
n=0

X∞
m=0

eiBt�n−m� jαj2njβj2n
n!m!

� c:c:

(16)

For the case of β = αeiϕ, where ϕ is the relative phase of the
considered two-mode coherent state, the above expression can
be rewritten as

W�t� = 2jαj2e−4jαj2 sin2Bt2 cos��G� B�t − ϕ�: (17)

Now, in the case of G ≫ B and for ϕ = 0, we obtain the final
expression of population inversion with the initial coherent
state,

Wcoh�t� = N̄e−2N̄ sin2 Bt
2 cos Gt, (18)

where we have set N̄ = jαj2
2 . It is worthwhile to note that the

dynamics of the system are drastically influenced by the nonlin-
ear collisional interactions. Equations (12) and (18) clearly dem-
onstrate that in the absence of inter-atomic interaction (B = 0),
population inversion undergoes a harmonic oscillatory evolu-
tion, and the atoms are regularly transferred between two states
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by the action of radiation fields. As is clear, in this case, we do not
expect to observe quantum phenomena, i.e., the collapse–revival
pattern and MQSTS. Indeed, the essence of these pure quantum
phenomena is the nonlinear collisional interactions.

3.3. Unitary time evolution operator approach beyond RWA

In this subsection, we want to investigate the dynamics of the
system using the time evolution operator approach without con-
sidering RWA. Since the general behavior of the system is sim-
ilar for both number and coherent state cases, here we only
obtain the dynamics of the system with the initial number state.
• The exact state vector of the system
We rewrite the Hamiltonian in Eq. (6) as below,

Ĥeff = AĴz � 2BĴ2z �
G
2
�Ĵ� � Ĵ−�: (19)

In the absence of nonlinear collisions (B = 0), the above
Hamiltonian in the interaction picture can be expressed as

Ĥ int = eiĤ0tĤ1e−iĤ0t =
G
2
�Ĵ�eiAt � Ĵ−e−iAt�, (20)

where we have used Ĥ0 = AĴz and Ĥ1 = G
2 �Ĵ� � Ĵ−�. In the case

of A = 0, the time evolution operator corresponding to the

Hamiltonian of Eq. (20) can be computed as Û�t� = eχ Ĵ�−χ
� Ĵ−

with χ = iqt and q = G=2. Once again, the initial state of the sys-
tem is chosen as jj,ji, similar to the number state case. Therefore,
the time-dependent state of the system during the interaction
can be obtained as

jΦ�t�i =
Xj

m=−j

���������������������������������
�2j�!

�j −m�!�j�m�!

s

× �cos qt�j�m�sin qt�j−mei�j−m�π2jj,mi: (21)

This is a generalized coherent state associated with the unitary
representations of the Su�2� algebra or atomic coherent state,
which is parameterized by the two polar angles in ζ = θ=2e−iϕ

with θ=2 = qt and with fixed ϕ at π=2. The general form
of the atomic coherent state can be defined as jθ,ϕi=
D�ζ�jj, − ji with D�ζ� = exp�ζĴ� − ζ* Ĵ−�[29]. Therefore, we
have briefly set jΦ�t�i = jθ = 2qt,ϕ = π=2i.
• The perturbed state vector of the system
In the presence of inter-atomic nonlinear collisions, the inter-

action Hamiltonian can be obtained as

Ĥ int = qfĴ�ei�A�B�2Ĵ z�1��t � Ĵ−e−i�A�B�2Ĵ z�1��tg: (22)

In this case, the exact dynamical evolution for the system can-
not be found due to the presence of the operator Ĵ z in nonlinear
terms in Eq. (22). Therefore, we proceed to apply the perturba-
tion theory and use the time evolution operator,

Û�t�= 1− i
Z

t

0
dt 0Ĥ int�t�−

Z
t

0
dt 0Ĥint�t�

Z
t 0

0
dt 0 0Ĥint�t 0 0�� · · · :

(23)

The time evolution operator up to the second-order perturba-
tion can be computed as below,

Û�t� = 1 −
q

Γ̂
��eiΓ̂t − 1�Ĵ� − �e−iΓ̂t − 1�Ĵ−�

� q2

2Γ̂2�Γ̂ − B� fΓ̂�1� e2i�Γ̂−B�t − 2eiΓ̂t � � 2B�eiΓ̂t − 1�gĴ2�

� q2

2Γ̂2B
�Γ̂�1 − e2iBt� � 2B�eiΓ̂t − 1��Ĵ� Ĵ−

� q2

2Γ̂2B
�Γ̂�e2iBt − 1� � 2B�e−iΓ̂t − 1��Ĵ− Ĵ�

−
q2

2Γ̂2�Γ̂� B� fΓ̂�2e
−iΓ̂t − e2i�Γ̂�B�t − 1�

� 2B�e−iΓ̂t − 1�gĴ2−, (24)

where we have set Γ̂ = A� B�2Ĵ z � 1�. Therefore, the state vec-
tor of the system after the action of the time evolution operator,
i.e., jΨ�t�i = Û�t�jj,ji, can be explicitly obtained as

jΨ�t�i = 1
N �t� �A�t�jj,ji � B�t�jj,j − 1i � C�t�jj,j − 2i�, (25)

where

A�t� = 1� jq2

α21B
�α1�1 − e2iBt� � 2B�eiα1t − 1��,

B�t� =
����
2j

p
q

α2
�e−iα2t − 1�,

C�t� = −
�����������������
j�2j − 1�p

q2

α23�α3 � B�
× fα3�2e−iα3t − e−2i�α3�B�t − 1� � 2B�e−iα3t − 1�g,

N �t� = �jA�t�j2 � jB�t�j2 � jC�t�j2�1=2, (26)

with definitions α1 = f �j�, α2 = f �j − 1�, α3 = f �j − 2�, and
f �j� = A� B�2j� 1�. Here, it is worth noting that the first-order
perturbed terms of the time evolution operator of Eq. (24)

are proportional to q
Γ̂ ≃

G=2
A�NB. For the sake of simplicity, for

A = 0 (as discussed in the second section) and considering
G ≪ NB, especially in the strong excitation condition, one
arrives at q

Γ̂ ≃
G

2NB ≪ 1. Also, the second-order terms contain
q2

Γ̂2 ≃ G2

4N2B2 ≪ G
2NB . Therefore, the leading terms in the expansion

of the time evolution operator include up to second-order
perturbed terms.
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3.4. Exact and perturbed analytical expressions of
population inversion beyond RWA

As mentioned above, the population inversion is defined as the
expectation value of the z component of the angular momentum
operator. Using the state of Eq. (21), the exact analytical expres-
sion of population inversion in the absence of nonlinear inter-
action can be obtained as

WΦ�t� = 2hΦ�t�jĴ zjΦ�t�i

=
Xm
j=−m

2m�2j�!
�j�m�!�j −m�! �cos qt�

j�m�sin qt�j−m, (27)

while, in the presence of nonlinear collisions via considering the
state in Eq. (25), one can derive the population inversion as

WΨ�t� = 2hΨ�t�jĴ zjΨ�t�i

=
2

N 2�t� �jjA�t�j
2 � �j − 1�jB�t�j2 � �j − 2�jC�t�j2�: (28)

4. Numerical Results and Discussion

Here, we investigate the dynamics of the system qualitatively.
Thus, we choose scaled parameters and a small number of
atoms. Nevertheless, by rescaling the involved parameters in
the model, one can consider more real physical conditions,
i.e., a larger number of atoms (such a small number of atoms
in the BEC has also been considered in typical works in the
literature[30,31]).
Figure 2 shows the time evolution of atomic inversion against

the scaled time τ = Bt for two initial number and coherent states.
One can clearly observe that the atomic inversion undergoes the
collapse–revival phenomenon. The period of revivals in the
coherent state case is twice the cases of the number state, which
can be found from the comparison of slowly varying parts of
atomic inversion in the number and coherent state cases resulted
from �cos Bt�N−1 and e−2N̄ sin2 Bt

2 , respectively. Indeed, the periods
of revivals in the number state and coherent state cases are TN =
π=B and TC = 2π=B, respectively. Two distinct revival periods

corresponding to the number and coherent state cases,
i.e., TN and TC originate from the fact that the atom number

difference operator b̂†2b̂2 − b̂†1b̂1 is quantized in units of two
for condensates in number states and in units of one for coherent
states[32]. Therefore, we conclude that the atomic inversion for
both number and coherent cases possesses similar behavior, and
also the collapse–revival phenomenon may occur due to the
presence of nonlinear collisions in the system. This phenome-
non declares itself in some related interacting systems, i.e., the
two-mode BEC system, wherein the collisional interactions
drastically influence the dynamics of the system[30]. In addition,
the usual atom-field interaction described by the Jaynes–
Cummings model may result in the collapse–revival phenome-
non, especially when the atoms begin the interaction with the
coherent field. In this case, the granular structure of photon dis-
tribution is the origin of this phenomenon[22].
Now, we are interested to find out how the strength of the

atom-field interaction affects the dynamics of the system. So,
we study population inversion in the system under the influence
of various interaction regimes. As is demonstrated in Fig. 3, the
various values of coupling strength of interaction (G) result in
different dynamical behaviors, i.e., transitions from oscillation
toMQSTS and also the collapse–revival phenomenon. As shown
in Fig. 3(a), for relatively weak coupling constant (i.e., G = 2B),
population inversion shows a regular oscillatory pattern, which
possesses both positive and negative values, meaning that
the atoms move from a level to another one (j1i ↔ j2i).
Choosing a stronger coupling constant such as G = 3B, one
can observe that the inversion oscillates just with positive ampli-
tude, which implies that the atoms are localized in one atomic

(a) (b)

Fig. 2. Effect of initial state on the time evolution of population
inversion for N = N̄ = 10 and G = 100B with scaled time τ = Bt.

(a) (b)

(c) (d)

Fig. 3. Effect of G on the time evolution of population inversion in
the case of number state versus the scaled time τ = Bt with N = 20.
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level. In the following, we discuss more of this physical situation.
For G = 20B, the population inversion again oscillates between
positive and negative values. Therefore, we can conclude that the
atomic localization has been removed in Fig. 3(c). Also, the col-
lapse–revival pattern can be seen in the pattern of population
dynamics. By further increasing the coupling strength to the
valueG = 50B, the collapse–revival phenomenon becomes more
pronounced. Generally, we can state that the atom-field cou-
pling strength G considerably affects the pattern of population
inversion and may lead to various quantum phenomena in the
dynamics of the system. In addition, the frozen behavior of pop-
ulation inversion can be understood when the Rabi frequency
(G) is sufficiently larger than nonlinear collisional interaction
strength B. In this case, the external fields force the atoms to
be polarized in a defined direction, and one can expect that
the general pattern of the population remains unchanged by fur-
ther increasing the Rabi frequency. In this condition, the system
is more stable, and the RWA is more reliable.
From Eqs. (12) and (18), it can be found that atomic inversion

is very sensitive to the number of atoms in the system.
Accordingly, we study the effect of the number of atoms on
the dynamical evolution system in Fig. 4 for the cases of number
and perturbed states. Once the number of atoms is odd, for in-
stance in Fig. 4(a), atomic inversion has both positive and neg-
ative values. On the other hand, whenever the number of atoms
in the system is even shown in Fig. 4(b), the population inversion
only possesses the positive values, which indicates the MQSTS
phenomenon as mentioned above. In addition, the effect of sec-
ond-order perturbation on the dynamics of the system has been
presented in each plot. In fact, using the second-order perturbed
state and by increasing the number of atoms in the system, one
can observe that the amplitude of atomic inversion considerably
decreases, and the MQSTS phenomenon becomes more pro-
nounced. Indeed, one can conclude that by increasing the num-
ber of atoms, the system shows more excitations due to
collisional inter-atomic interactions. Also, the pattern of the typ-
ical collapse–revival phenomenon can be seen for a larger

number of atoms in the system, particularly in the second plot
of Fig. 4.
In this section, it would be useful to check the accuracy of the

results of perturbation. In this regard, we compare the popula-
tion inversion obtained by the perturbation method with the
numerical result of the solution of the Schrödinger equation cor-
responding to the Hamiltonian in Eq. (6). In order to solve the
Schrödinger equation, we consider a state vector for the system
as jψSch�t�i = K1�t�jj,ji � K2�t�jj,j − 1i � K3�t�jj,j − 2i in
analogy to Eq. (25). After obtaining the time-dependent coeffi-
cients Ki�t� for i = 1,2,3, we numerically compute the popula-
tion inversion using WSch�t� = 2hψSch�t�jĴ zjψSch�t�i. Figure 5
shows the results of population inversion obtained via the per-
turbation approach and numerical method, respectively. As can
be observed from Figs. 5(a) and 5(b), the perturbation results up
to the second-order are in agreement with the numerical solu-
tion. Both methods present the same pattern with good accu-
racy, however, a small difference between their frequencies
exists, which may be improved by considering higher-order per-
turbed terms and choosing the relevant state vector for numeri-
cal computations.

5. Summary and Conclusion

We investigated the dynamics of a BEC system consists of N
three-level atoms with a Λ configuration interacting with two
classical radiation fields. Indeed, we studied the dynamics of
population inversion by considering different physical situa-
tions. Our theoretical and numerical results demonstrated that
the system undergoes the collapse–revival andMQSTS phenom-
ena. The period of revival and also the pronouncement of
MQSTS depend on the number of atoms in the system as well
as the parameters describing the interactions between the
components of the system. Furthermore, it was shown that
the dynamical evolution of population inversion experiences
transitions from regular oscillation to collapse–revival and
MQSTS phenomena. Based on the presented results, atomic col-
lisions play a key role in the dynamics of BEC atoms; therefore,
such nonlinear interactions are of fundamental interest for the

(a) (b)

Fig. 4. Evolution of population inversion for the number state (dash
lines) and perturbed state (solid lines) against the scaled time τ = At,
when B = 0.2A for different numbers of atoms in the system. The par-
ity of number of atoms considerably affects the behavior of popu-
lation inversion. The even parity leads to MQSTS phenomenon.

(a) (b)

Fig. 5. Comparison between the results of the perturbationmethod
and numerical solution of the Schrödinger equation for N = 10,
B = A = 100q, and τ = At.
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design and fabrication of devices that produce and deal with
coherent atomic beams such as atom lasers and atomic
interferometers.
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