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Quantum random access codes (QRACs) are important communication tasks that are usually implemented in prepare-and-
measure scenarios. The receiver tries to retrieve one arbitrarily chosen bit of the original bit-string from the code qubit sent
by the sender. In this Letter, we analyze in detail the sequential version of the 3 → 1 QRAC with two receivers. The average
successful probability for the strategy of unsharp measurement is derived. The prepare-and-measure strategy within pro-
jective measurement is also discussed. It is found that sequential 3 → 1 QRAC with weak measurement cannot be always
superior to the one with projective measurement, as the 2 → 1 version can be.
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1. Introduction

Random access code (RAC) is a type of collaborative communi-
cation task which is suitable for a wide variety of applications.
Usually, RAC is implemented in a prepare-and-measure (PM)
scenario[1], where the sender encodes the long message (string
of more than one bit) into a short code (one bit usually) and
sends it to the receiver, who tries to decode an arbitrarily chosen
bit from the initial message. If the sender is allowed to encode the
messages into a qubit state, the receiver can successfully retrieve
the random bit with an average probability higher than that of
the classical version, via corresponding measurements, which is
the so called quantum RAC (QRAC). QRAC was introduced in
Refs. [2–4], which is useful to certify quantum systems,
e.g., dimension witnesses[5], self-testing[6–8], and comparison
of different quantum resources[9,10]. It can also be implemented
in quantum information processing protocols such as quantum
key distribution[11,12], network coding[13], and random number
generation[14].
The PM scenario of RAC/QRAC above involves one sender

and one receiver. For two receivers, Bob and Charlie, two
classical RACs can be implemented parallelly and independ-
ently, as the classical code can be copied or broadcast.
However, in a quantum version, as the number of all possible

messages is larger than two, there must be at least a pair of

non-orthogonal states in the set of encoded states, which cannot
be cloned perfectly. The quantum system can be accessible by
the receivers sequentially. Assuming that Bob, the first receiver,
performs quantum operations on the quantum message from
the sender, Alice, he gets a classical result, which reveals some
information of the original message, and a quantum output,
which will be delivered to Charlie, the second receiver, who also
tries to retrieve the original message. There is no doubt that the
average successful probabilities for both receivers are affected by
Bob’s operation. As the quantum system will collapse in one of
the eigenstates of the sharp (projective) measurement operator,
a weaker measurement performed by Bob is helpful for Charlie’s
further retrieving. As a special kind of positive operator-valued
measurement (POVM)[15–20], unsharp measurement is a weak
version of projection measurement, introducing less damage
to a system[21–26], as the trade-off between information gain
and disturbance. It plays an important role in certain quantum
information processing tasks, such as quantum tomogra-
phy[27,28], state discrimination[29,30], and randomness certifica-
tion[31,32]. In the sequential QRACs, the total probability of
successful retrieval with optimal trade-off using weak measure-
ment has been characterized in Refs. [33,34] and demon-
strated[35] in a photonic experiment.
All of the scenarios above[33–35] adopt 2 → 1 QRAC (encode

2 bit into a qubit), and it is shown that unsharp measurement
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can be better than the sharp projective one. Here, in this Letter,
we extend it to the 3 → 1 QRAC. The total successful probability
of sequential QRAC for two receivers with Bob’s unsharp mea-
surement is derived. For comparison, we also investigate the
sequential QRAC, where Bob uses sharp measurement.
However, numerical results show that unsharp measurement
does not always show merits in the case of 3 → 1.

2. Quantum Random Access Code

In the n → 1 RAC, Alice, the sender, encodes an n bit-string,
x ∈ f0,1gn, into 1 bit a, via a classical function a = f �x�.
Given the random input y ∈ f0,1, : : : ,n − 1g corresponding
to the bit to be retrieved, the receiver, Bob, gets the estimate
b ∈ f0,1g using a decode function, b = g�a,y�. As the simplest
case, Alice sends one of the origial bits, and Bob guesses all of

the others randomly. So, the average success probability is 1�1=n
2 .

In the n → 1 QRAC, as shown in Fig. 1, the sender encodes
her classical n bit message x into one qubit ρx, and Bob extracts
the required bit as b ∈ f0,1g according to the random
variable y ∈ f0,1, : : : ,n − 1g he receives by performing some
measurement fMbjygb∈f0,1g, where Mbjy > 0 and

P
bMbjy = I.

Generally, the statistical results of this PM scheme can be
expressed by conditional probability by the Born rule,
P�bjx,y� = tr�ρxMbjy�. The average probability of a successful
guess Psucc is expressed as

Psucc =
1
n2n

X
x,y

P�b = xyjx,y�: (1)

For n = 2, the optimal probability is 1
2 � 1

2
��
2

p [4]. It exceeds the
limit of the classic scheme 3/4.
For the sequential QRAC, as depicted in Fig. 2, the second

receiver, Charlie, receives a random classical variable z ∈
f0,1, : : : ,n − 1g and performs corresponding measurements
fNcjzgc∈f0,1g on the post-processing state ρyx,b delivered by Bob.

The classical output for Charlie is c ∈ f0,1g. The total probability
of a successful guess for the senario is written as

Psucc =
1
n2n

X
x,y

P�b = xyjx,y� �
1 − α

n2n
X
x,z

P�c = xzjx,z�, (2)

with α ∈ �0,1� indicating the contribution of Bob to a success-
ful guess.
In general, we can use a quantum instrument[36] to describe

Bob’s two-outcome measurement, which is characterized by
Kraus operators fKbjygb∈f0,1g satisfying

P
bK

†

bjyKbjy = I. It is
an ordered set of the completely positive trace non-increasing
map Γbjy�ρx� = KbjyρxK

†

bjy acting on the input state ρx, with

the probability p�bjx,y� = tr�ρxK†

bjyKbjy�. The normalized post-

measurement state will be described by ρyx,b =
KbjyρxK

†

bjy
p�bjx,y� on the

outcome b. The sharp measurement, projection-valued mea-
sure (PVM), can be considered as a special case, where
KbjyKb 0 jy = Kbjyδbb 0 .
For n = 2, the difference of strategies for Bob, the unsharp

POVM and the PVM, is discussed in detail[34]. As shown
in Fig. 3, the PVM strategy is divided into three schemes:
(i) unitary, where Bob does not extract information for any y;
(ii) measure and prepare, where Bob performs the correspond-
ing PVM according to y; and (iii) mixed, which is the synthesis
of the first two strategies. It is found that the POVM scheme

Fig. 1. Scenario with two participants. x: input message of Alice; y, b: input and
output of Bob, respectively; ρx: state that Alice sends to Bob.

Fig. 2. Scenario with three participants. x: input message of Alice; y, b: input
and output of Bob, respectively; ρx: state that Alice sends to Bob; ρyx,b: post-
processing state that Bob sends to Charlie.

Fig. 3. Bounds on average success probability under 2→ 1 task. Short dashed
line corresponds to the classical strategy. Dotted line, dotted and dashed line,
and dotted and solid line correspond to the “unitary,” “mixed,” and “measure
and prepare” projective strategies, respectively. Solid line corresponds to the
general strategy with unsharp measurements. All of the bounds are tight.
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is always better than PVM schemes for all α, In other words,
unsharp measurements can provide advantages.

3. 3 → 1 QRAC for Two Receivers with Weak
Measurement

Let us consider the 3 → 1 QRAC task in this section. For the one
receiver case, the successful probability can be written as

PB
succ =

1
24

X
x,y

P�b = xyjx,y�, (3)

where xy is the yth bit of the input string x. PB
succ ≤ 2=3, for a

classical verion, while PB
succ = 1

2 � 1
2
��
3

p ≈ 0.7887 for a standard

QRAC.
In the sequential QRAC process, Bob receives the code qubit

from Alice, and Charlie receives the post-measurement state
from Bob. Here, the state set {ρx} sent by Alice corresponds to
the eight vertices of the inscribed cube of the Bloch sphere, i.e.,

ρx =
1
2
I� 1

2
���
3

p
X
i

�−1�xiσi, (4)

where fσigi=0,1,2 denotes the three Pauli matrices fσx,σy ,σzg,
respectively. Bob’s unsharp measurements can be written in
Kraus operators,

Kbjy =

���
λ

p
�

�����������
1 − λ

p

2
I�

���
λ

p
−

�����������
1 − λ

p

2
�−1�bσy, (5)

where λ ∈ �0.5,1� is the maximal eigenvalue of Bob’s operations,
as the sharpness of the corresponding measurement. When Bob
performs a projective measurement, where λ = 1, we will get the
optimal value PB

succ ≈ 0.7887, which is higher than the classical
bound 2/3.
As a sequential communication task, Charlie receives a post-

measurement state. Without any information of Bob’s measure-
ment choice y or outcome b, the post-measurement state is
written as

ρ
0
x =

1
3

X
b,y

KbjyρxK
†

bjy: (6)

Subsequently, he performs the two-outcome measurement.
Here, the best strategy of Charlie is the sharp measurement,
fNcjz = 1

2 �I� �−1�cσz�g. The average successful probability
PC
succ for Charlie is

PC
succ =

1
24

X
x,z

P�c = xzjx,z�: (7)

Although Charlie’s choice of measurements is independent of
Bob’s measurement choice and outcome, PC

succ will be potentially
affected by Bob’s operations. Given the sharpness λ of Bob’s
measurment, we can obtain

PB
succ =

1
2
� 2λ − 1

2
���
3

p , (8)

PC
succ =

1
2
� 1� 4

�����������������
λ�1 − λ�

p
6

���
3

p : (9)

A complementary relationship between PB
succ and PC

succ is
found, as shown in Fig. 4. The superiority of quantum RAC over
the classical one is obvious, as either PB

succ or PC
succ is greater than

the classical bound. Further, by bringing Eqs. (8) and (9) into
Eq. (2), the optimal λ is found as a function of α:

λ =
1
2
� 3α

2
������������������������������
4 − 8α� 13α2

p : (10)

Eventually, we could obtain the optimal average success
probability:

PPOVM
succ =

1
2
� 1 − α

6
���
3

p � 1

6
���
3

p
������������������������������
4 − 8α� 13α2

p
: (11)

4. 3 → 1 QRAC for Two Receivers without Weak
Measurement

Now let us consider the strategies without weak measurement.
For the unitary strategy, where Bob does nothing but guessing,
and Charlie receives the identical state that Alice sends, we have

Psucc =
α

2
� �1 − α�

�
1
2
� 1

2
���
3

p
�
: (12)

For the PVM scheme, we also use the methods proposed in
Ref. [32]. The total successful probability is written as
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P
succ
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0.55

0.6
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0.8

P
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C

quantum
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Fig. 4. Correlations between the two success probabilities (PBsucc, P
C
succ).

The curve represents the boundary of the quantum set under 3→ 1; shadow
rectangle represents classical boundary under 3 → 1.
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PPVM
succ =

1
72

X
x,y,z,b,c

tr�σyx,bNz
c ��αδb,xy � �1 − α�δc,xz �, (13)

where σyx,b is the unnormalized post-measurement state. For
pure state ρx = jϕxihϕxj and Bob’s projective measurement on
the base fjψy

0i,jψy
1ig,

σyx,b = jhψy
bjϕxij2jψy

bihψ
y
bj: (14)

To optimize the parameters in the measure-and-prepare
strategy, we use the unit vectors on the Bloch sphere to denote
an arbitrary pure state of Eq. (4) and get

jhψ jϕij2 = tr�ρ1ρ2� =
1
2
�1� r!1 · r!2�: (15)

Note that the above formula is a function about angles (θ, φ)

while using spherical coordinate vector r!= �sin θ cos φ,
sin θ sin φ, cos θ�. The result of numerical simulation is shown
in Fig. 5.
It is found that the optimal strategy for 3 → 1 QRAC is quite

different from that of 2 → 1 QRAC. In this guessing game, the
unsharp scheme cannot always have advantages. The average
success probability of the “measure and prepare” strategy is
always 0.75 when α is approximately in the range of �0,0.71�.
It is always higher than that of the POVM strategy for α ≥ 0.15.
The average successful probability 0.75 can be achieved by
another kind of classical RAC[4]. In the classical scheme, the
8 bit-strings fxg are divided into two categories according to
the number of ones in it, i.e., fxg0 = f000,001,010,100g and
fxg1 = f111,110,101,011g, which are encoded into classical bits
to be sent, 0 and 1, respectively. Therefore, when the receiver gets

bit 0, he can guess that the original bit-string is 000 in set fxg0,
and, when it gets bit 1, the guess is 111 in set fxg1. In both cases,
the average success probability is �1� 2

3 · 3�=4 = 0.75.

5. Summary

In this Letter, we have discussed the sequential version of the
3 → 1 QRAC task with two receivers through unsharp measure-
ments. As a trade-off between information gain and state dis-
turbance, the successful probability for the first receiver and
the second one will increase and decrease, respectively, with
the sharpness of the first one’s measurement increasing. The
optimal average probability of successful retrieval with unsharp
measurements is derived. Furthermore, two strategies for the
first receiver are discussed, i.e., the unitary one and the mea-
sure-and-prepare one with PVM. It is found that for most of
the weight for averaging, the measure-and-prepare strategy with
PVM achieves a higher total success probability of 0.75 than the
POVM one, which is different from the 2 → 1 case. Moreover,
this success probability can be reproduced by a classical sce-
nario. Therefore, our present work can provide useful references
for further implementation of QRAC and RAC. We believe that
our theory can be expanded to the scheme with more receivers
or higher-dimensional QRACs and can be applicable to the
implementation of a quantum random number generator
(QRNG) based on QRACs[37].
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