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Computational ghost imaging (CGI) has recently been intensively studied as an indirect imaging technique. However, the
image quality of CGI cannot meet the requirements of practical applications. Here, we propose a novel CGI scheme to
significantly improve the imaging quality. In our scenario, the conventional CGI data processing algorithm is optimized
to a new compressed sensing (CS) algorithm based on a convolutional neural network (CNN). CS is used to process
the data collected by a conventional CGI device. Then, the processed data are trained by a CNN to reconstruct the image.
The experimental results show that our scheme can produce higher quality images with the same sampling than conven-
tional CGI. Moreover, detailed comparisons between the images reconstructed using the deep learning approach and with
conventional CS show that our method outperforms the conventional approach and achieves a ghost image with higher
image quality.
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1. Introduction

Ghost imaging is an indirect imaging technique based on quan-
tum properties (e.g., quantum entanglement or intensity corre-
lation) of the light field[1–3]. Compared to conventional optical
imaging techniques, ghost imaging requires two light beams: a
reference light beam, which never illuminates the object and is
directly measured by a detector with a spatial resolution (e.g., a
charge-coupled device) and an object light beam, which, after
illuminating the object, is measured by a bucket detector with
no spatial resolution. By correlating the photocurrents from
the two detectors, the ghost image is retrieved. Previous works
show that ghost imaging has potential applications in remote
sensing[4,5], industrial imaging[6,7], medical imaging[8–10], and
super-resolution imaging[11,12]. However, conventional ghost
imaging requires two optical paths, which severely limits its
application. Fortunately, Shapiro creatively introduced the con-
cept of computational ghost imaging (CGI) in 2008[13]. In the
CGI setup, the idle light is obtained by calculation, so the refer-
ence light path is omitted in the experimental apparatus[14].
Compared with conventional ghost imaging, CGI is more suit-
able for application in remote sensing, radar, and other fields.
After more than 10 years, CGI theory and experiments have

matured. However, CGI is still in the laboratory stage. One of the
critical problems is that the image quality cannot meet practical

applications. Generally, to produce a clear image, conventional
CGI, including conventional ghost imaging, takes approxi-
mately tens of thousands of sets of data, which obviously cannot
meet the requirements of practical application, especially those
of moving target imaging. How to improve the image quality
of ghost imaging is one of the key factors for realizing its appli-
cation. Compressed sensing (CS)[15–18] and deep learning
(DL)[19–22] greatly improve the image quality, but there is still
a gap compared with the quality of classical optical imaging.
In this article, we propose a novel CGI scheme with CS based

on a convolutional neural network (CNN) to improve the image
quality. The setup is based on a conventional CGI experimental
apparatus. First, the data collected by the CGI device are com-
pressed by the conventional CS algorithm; then, the processed
data is trained to reconstruct the ghost image. This scheme com-
bines the advantages of CS with a low sampling rate and a CNN
for accurate image reconstruction. Theoretical and experimental
results show that this scheme is significantly better than conven-
tional CS and a conventional DL algorithm with a CNN under
the same amount of data.

2. Theory

We use a conventional CGI experimental device in our
work. The setup is shown in Fig. 1. In the setup, a
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quasi-monochromatic laser illuminates an object T�ρ�, and the
reflected light carrying the object information is modulated by a
spatial lightmodulator. A bucket detector collects themodulated
light Edi�ρ,t�. Correspondingly, the calculated light Eci�ρ 0,t� can
be obtained by diffraction theory. The object image can be
reconstructed by correlating the signal output by the bucket
detector and calculated signal[23–25], i.e.,

G�ρ,ρ 0�

=
1
n

Xn

i=1

�hjEdi�ρ,t�j2jEci�ρ 0,t�j2i − hjEdi�ρ,t�j2ihjEci�ρ 0,t�j2i�,

(1)

where h·i stands for an ensemble average. The subscript i =
1, 2, : : : , n denotes the ith measurement, and n denotes the total
number of measurements. For simplicity, the object function
T�ρ� is contained in Edi�ρ,t�.
The flow chart of the CS-CNN is shown in Fig. 2. In the fol-

lowing, we briefly introduce the process of this algorithm. The
algorithm mainly consists of three parts: (i) a conventional CS
program to compress the data collected by the CGI device; (ii) a
conventional CGI process program; and (iii) a 10-layer CNN
constructed for the training data.
In the conventional CGI device, a set of data (n) is measured

by a bucket detector. Correspondingly, according to the diffrac-
tion theory of light, the distribution of the idle light field in the
object plane can be obtained. Thus, we obtain n 200 × 200 data
points. Each data point is divided into 20 × 20 blocks without

overlapping. According to CS theory[15,16], the random
Gaussian matrix is used to process the data. The rows of 20 ×
20 data blocks are arranged into a column vector to obtain a
400-dimensional column vector. In this article, the measure-
ment rate is MR = 0.25, and thus the size of the measurement
matrix is 100 × 400. Finally, a 100-dimensional measurement
vector is obtained. The above process can be expressed as

y = ϕx, (2)

whereϕ ∈ RM×N�M ≪ N� is themeasurement basis matrix, x ∈
RN represents the vectorized image block, and y ∈ RM is the
measurement vector. N=M represents the measurement rate.
Following the above steps, we can further compress the data
to 50 dimensions.
A new set of data is obtained by processing the above data

with a conventional CGI program. Then, a 10-layer CNN is con-
structed to train the data. Layers 1–4 of the network are stacked
autoencoders, and layers 5–10 are convolution layers. The mea-
surement matrix is replaced by a stacked autoencoder, and the
input layer is 20 × 20 data blocks. All of the rows are arranged
into a 400 × 1 column vector. If the number of neurons in the
first layer is C, the measurement rate is MR = C=400. The first
layer of the network is connected to the column vector x con-
verted from the input image block, and the number of neurons
C is set according to different measurement rates. The activation
function is a rectified linear unit (ReLU) function, which outputs
the C-dimensional column vector y, i.e.,

y = T�W1x� b1�, (3)

where T represents the ReLU activation function,W1 represents
the weight parameter vector of neurons in the first layer, and b1
represents the bias of neurons in the first layer.
The second layer of the network is fully connected to the first

layer, which has 400 neurons. Take the output y of the first layer
as the input, output x, and the activation function is the ReLU
function. In the same way, the third layer is fully connected to
the second layer with 100 neurons. The fourth layer is fully con-
nected to the third layer with 400 neurons. The initial recon-
structed image block vector is rearranged into 20 × 20 image
blocks according to the original row and column to obtain
the preliminary reconstructed image block.
Finally, the CNN is used to reconstruct the image block accu-

rately. The output data of the fourth layer are taken as the input
of the fifth layer. In the fifth layer, sixty-four 11 × 11 convolution
kernels are used to generate sixty-four 10 × 10 feature maps. The
sixth layer of the network is connected to the fifth layer (a con-
volution layer), and thirty-two 1 × 1 convolution kernels are
used to generate thirty-two 20 × 20 characteristic graphs. The
seventh layer of the network is connected to the sixth layer (a
convolution layer), and a 7 × 7 convolution kernel is used to
generate a 20 × 20 feature map. The eighth layer of the network
is connected to the seventh layer (a convolution layer), and sixty-
four 11 × 11 convolution cores are used to generate sixty-four
20 × 20 feature maps. The ninth layer of the network is

Fig. 1. Setup of the CGI system with CS-CNN. SLM, spatial light modulator; BD,
bucket detector.

Fig. 2. Network structure of the proposed CS-CNN.
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connected to the eighth layer (a convolution layer), and thirty-
two 1 × 1 convolution kernels are used to generate thirty-two
20 × 20 characteristic graphs. The activation function of the
above process is an ReLU function. The tenth layer of the net-
work is connected to the ninth layer (a convolution layer). A 7 ×
7 convolution kernel is used. The number of zeros in the tenth
layer (a convolution layer) is three, and the output of the acti-
vation function is not used to generate the reconstructed image
block of size 20 × 20.
In the DL framework Caffe, the 10-layer network is trained in

an unsupervised way, and the loss function is

L�fWg� = 1
T

XT

i=1

��F�xi,fWg� − xi
��2: (4)

The number of input neurons in the first layer is zero, and the
number of output neurons in the fourth layer is zero. In the 5th
to 10th layers of the network, the initial weight distribution is
subject to a Gaussian distribution with amean of zero and a vari-
ance of 0.01. In layers 1–10 of the network, the initial offset val-
ues are set to zero. After the deep neural network, the
reconstructed image blocks are obtained, then the image blocks
are rearranged according to the original row, and the row values
are rearranged according to the index.

3. Results

The experimental setup is schematically shown in Fig. 1. A stan-
dard monochromatic laser (30 mW, Changchun New Industries
Optoelectronics Technology Co., Ltd., MGL-III-532) with wave-
length λ = 532 nm illuminates an object (Rubik’s Cube). The
light reflected by the object focuses on a two-dimensional ampli-
tude-only ferroelectric liquid crystal spatial light modulator
(Meadowlark Optics A512-450-850) with 512 × 512 addressable
15 μm × 15 μm pixels through the lens. A bucket detector col-
lects the modulated light. Correspondingly, the reference signal
is obtained by MATLAB software. The ghost image is recon-
structed by the CS-CNN. In this experiment, the sampling rate
is MR = 0.25, and the number of training sets is 1000.
Figure 3 shows a set of experimental results. Figure 3(a1) is the

object. Figures 3(a2)–3(a5) represent reconstructed ghost
images with different numbers of frames. The results show that
the image quality is significantly improved by increasing the
number of frames. High-quality ghost images comparable to
classical optical imaging can be produced with little data. To
quantitatively analyze the quality of the reconstructed image
at different frames, the peak signal to noise ratio (PSNR) and
structural similarity index (SSIM) are used as our evaluation
indexes. As can be seen from Fig. 3(b), despite the number of
samples being very small, the reconstructions are still in reason-
able quality.
We compare the conventional CS, DL, and CS-CNN CGI

algorithms based on the same experimental data in Fig. 4.
CGI can not effectively reconstruct the image when the number
of frames is less than 100. Consequently, there is no

experimental result of CGI in Fig. 4. The conventional CS algo-
rithm and CS-CNN algorithm have the same sampling rate,
i.e., MR = 0.25. The DL algorithm and CS-CNN algorithm set
the same dataset, i.e., 1000. When the number of samples is very
low, Fig. 4 shows that with the same number of frames the image
quality obtained by this scheme is the best. The quantitative
results (Fig. 5) show that the PSNR of CGI with CS-CNN is

Fig. 3. Ghost images reconstructed by CGI with CS-CNN. (a1) Classical image.
The numbers of frames in the reconstructed ghost images are (a2) 30, (a3) 50,
(a4) 70, and (a5) 90. (b) PSNR and SSIM curves of the reconstructed images
with different frame numbers.

Fig. 4. Detailed comparison between the ghost images reconstructed using
the conventional CS algorithm, DL algorithm, and CS-CNN algorithm. The num-
ber of frames is (a) 30, (b) 50, (c) 70, and (d) 90.

Fig. 5. PSNR and SSIM curves of reconstructed images of CS, DL, and CS-CNN
with different frame numbers.
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on average 28.4% higher than that of CGI with DL under the
same reconstructed frame number, and SSIM increases by
93.8% on average[26].

4. Summary

In summary, we have proposed a novel method to improve the
image quality of CGI. This method combines the advantages of
the CS algorithm and CNN algorithm. We analyzed the perfor-
mance of the conventional CGI, CS, and DL algorithms under
the same conditions and observed that our CS-CNN scheme
outperforms the other methods, especially when the sampling
rate is small. CS based on a CNN is the better CGI method to
date. This method provides a promising solution to these chal-
lenges that prohibit the use of CGI in practical applications.
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