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The study of structured laser beams has been one of the most active fields of research for decades, particularly in
exploring laser beams with orbital angular momentum. The direct generation of structured beams from laser
resonators is deeply associated with the formation of transverse modes. The wave representations of transverse
modes of spherical cavities are usually categorized into Hermite–Gaussian (HG) and Laguerre–Gaussian (LG)
modes for a long time. Enormous experimental results have revealed that the generalized representation for the
transverse modes is the Hermite–LG (HLG) modes. We make a detailed overview for the theoretical description
of the HLGmodes from the representation of the spectral unitary group of order 2 in the Jordan–Schwinger map.
Furthermore, we overview how to derive the integral formula for the elliptical modes based on the Gaussian
wave-packet state and the inverse Fourier transform. The relationship between the HLG modes and elliptical
modes is linked by the quantum Fourier transform. The most striking result is that the HLG modes can be
exactly derived as the superposition of the elliptical modes without involving Hermite and Laguerre polynomials.
Finally, we discuss the application of the HLG modes in characterizing the propagation evolution of the vortex
structures of HG beams transformed by an astigmatic mode converter. This overview certainly provides not only
a novel formula for transverse modes, but also a pedagogical insight into quantum physics.
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The quantum harmonic oscillator is an indispensable
paradigm to understand the concept of quantum-classical
correspondence, quantized radiation fields, and quantum
optics. The eigenmodes of the two-dimensional (2D) quan-
tum harmonic oscillator can be analytically solved as
Hermite–Gaussian (HG) modes with rectangular sym-
metry or Laguerre–Gaussian (LG) modes with circular
symmetry[1]. Since the paraxial wave equation for the
spherical laser cavity is identical to the Schrödinger equa-
tion for the 2D harmonic oscillator, the HG and LG
eigenmodes play an important role in exploring the laser
transverse modes[2–4]. With the advent of end-pumped
configurations, the high-order HG modes[5–8] and LG
modes[9–15] can be efficiently generated in diode-pumped
solid-state lasers. The Ince–Gaussian (IG) modes, another
form of eigenfunctions to the paraxial wave equation, have
been recently introduced[16] and been also experimentally
observed in stable resonators[17–19].
The study of optical pattern formation has been one

of the most active fields of research for decades[20–25]. Based
on Hamilton’s optico-mechanical theory[26,27], modern
laser resonators have been widely used to analogously ex-
plore the formation of quantum coherent waves in the
mesoscopic regime[28–41]. There are some intriguing fea-
tures in the spatial structures of high-order transverse
modes, such as low divergence of Bessel beams[42], orbital
angular momentum (OAM) of helical beams[43], free
acceleration of Airy beams[44], and evolution of light pulse
in a nonlinear laser cavity[45]. Moreover, several interest-
ing issues for generating optical vortices have been
explored, such as the formation of vortex lattices in

transverse-mode-locked processing[46,47], the phenomenon
of Berezinskii–Kosterlitz–Thouless phase transition[48–50],
and twisted speckle patterns[51].

The general forms characterizing scalar monochromatic
optical waves are complex-valued functions that can
be expressed as the real and imaginary parts. Intersections
of nodal lines of real and imaginary parts are isolated
zeros, so-called phase singularities[52]. Since singular points
are surrounded by a circulating phase, they are typically
related to the formation of optical vortices[53]. Conse-
quently, the terms phase singularity and optical vortex are
often used interchangeably. Optical vortex beams[54,55]

carrying OAM can be used in various fields[56], including
optical tweezers[57–60], trapping and guiding of cold
atoms[61–63], radio communications[64,65], and quantum infor-
mation processing[66]. Several techniques have been pre-
sented to create optical vortex beams[67,68]. Abramochkin
and Volostnikov originally used an astigmatic mode con-
verter (AMC) formed by a matched pair of cylindrical
lenses to generate the so-called Hermite–LG (HLG)
beams[69]. The HLG beams, a continuous evolution be-
tween HG and LG beams, can successively be realized by
rotating the cylindrical lens about the optical axis by an
angle ζ.

Ellipses are the classical periodic orbits in the 2D iso-
tropic harmonic oscillator. Pollet et al.[70] theoretically
exploited the special unitary group of degree 2 [SU(2)]
coherent state to demonstrate the quantum wave func-
tions localized on elliptical orbits. It has been universally
found that quantum wave functions localized on classical
periodic orbits are associated with striking quantum
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phenomena such as conductance fluctuations in meso-
scopic semiconductor billiards[71,72], oscillations in photo-
detachment cross sections[73,74], and shell effects in metallic
clusters[75,76]. In laser physics, we have experimentally used
a diode-pumped solid-state laser to observe the elliptical
modes corresponding to the SU(2) coherent state[77,78].
Mathematically, the SU(2) elliptical mode is a superposi-
tion of the degenerate HGmodes[79]. We have recently veri-
fied that elliptical modes and HG modes can form a
quantum Fourier transform pair[80]. From the representa-
tion of the quantum coherent state, we have inventively
derived the elliptical mode to be as an integration of
the 2D Gaussian wave packet over the elliptical orbit
without involving the HGmodes. The derived integral for-
mula can be extensively employed to compute not only
elliptical modes but also HLG modes in a supereffi-
cient way.
In this article, we exploit the Schwinger’s SU(2) trans-

formation[81] to systematically overview the wave represen-
tation of the HLG transverse modes of spherical laser
resonators. The SU(2) representation for the HLG modes
analytically connects the HG and LG modes through the
rotational transformation on the Poincaré sphere. On
the other topic, we review the wave representation of the
elliptical modes by extending the one-dimensional (1D)
Schrödinger coherent state to the 2D coherent state.
The integral formula of the elliptical modes is comprehen-
sively derived as the integration of the Gaussian wave
packet over the elliptical trajectory. We further exploit
the quantum Fourier transform to decompose the HG
mode as a coherent superposition of elliptical modes cor-
responding to a bundle of elliptical orbits. We also over-
view that the decomposition of the HG mode can be
extended to express the HLG mode as a coherent super-
position of elliptical modes corresponding to a bundle of
elliptical orbits under the SU(2) transformation. The over-
whelming superiority of representing the HLG modes
based on the elliptical modes is the direct manifestation
of the wave-ray (quantum-classical) connection without
involving the special functions of Hermite and Laguerre
polynomials. Finally, we overview how to employ the
wave representation of the HLG modes to characterize
the propagation evolution of the vortex structures of HG
beams transformed by a single lens AMC with arbitrary
angle ζ. Since laser modes with OAM have been inten-
sively studied over the past few years[82–86], the present
analysis certainly provides not only a pedagogical insight
into quantum physics but also a novel formula for gener-
ating optical vortices.
The transverse modes in the spherical cavity are iden-

tical to the eigenfunctions in the 2D isotropic harmonic
oscillator. In terms of the ladder operators, the Hamilto-
nian of the 2D isotropic oscillator is given by[87]

Ho ¼ ða†1a1 þ a†2a2 þ 1Þℏωo; (1)

where a1 ¼ ðx þ ipxÞ, a†1 ¼ ðx − ipxÞ, a2 ¼ ðy þ ipyÞ, and
a†2 ¼ ðy − ipyÞ are ladder operators in the quantum

harmonic oscillator, ℏ is the reduced Planck constant, and
ωo is the natural frequency. The eigenfunctions of Ho are
given by[2–4]

ψ ðHGÞ
n1;n2ð ~x; ~yÞ ¼ ð2n1þn2n1 ! n2! πÞ−1∕2 e−ð~x2þ ~y2Þ∕2Hn1

ð ~xÞHn2
ð ~yÞ;
(2)

where n1 and n2 are the quantum numbers, ~x ¼ x
��������������
μωo∕ℏ

p
and ~y ¼ y

��������������
μωo∕ℏ

p
are the dimensionless variables for

the xy space, μ is the oscillator mass, and Hnð·Þ is the
Hermite polynomials of order n. In laser physics, the eigen-
functions in Eq. (2) are usually called the HG modes. Due
to the symmetry of rotational invariance, the representa-
tion of the eigenfunctions of Ho can be generalized by per-
forming the SU(2) transformation of HG modes.

Schwinger utilized the Jordan map to work out the
theory of quantum angular momentum and proposed
the Ji operators as

[81,87–89]

J1 ¼ ða†1a2 þ a†2a1Þ∕2; (3)

J2 ¼ −iða†1a2 − a†2a1Þ∕2; (4)

J3 ¼ ða†1a1 − a†2a2Þ∕2: (5)

The Ji operators satisfy the usual angular-momentum
commutation relations, i.e., Lie commutator algebra
½Ji ; Jj � ¼ iεi;j;k Jk , where the Levi–Civita tensor εi;j;k is
equal to þ1 and −1 for even and odd permutations of
its indices, respectively, and zero otherwise. Note that
the Ji operators can be expressed as the image of the Pauli
matrices σ of SU(2) in the Jordan map: J ¼ a†ðσ∕2Þa. It is
known from classical mechanics that an arbitrary rotation
of a rigid body can be expressed in terms of the Euler ro-
tations. In quantum mechanics, the rotation operator is
given by RnðϕÞ ¼ e−iϕn·J to express a rotation through
an angle ϕ about an arbitrary axis n. Due to the rotational
invariance, the operator Ho commutes with the rotation
operators J: ½Ho; J� ¼ 0. The result of ½Ho; J� ¼ 0 indicates
that ½Ho; e−iϕn·J� ¼ 0. The HG modes in Eq. (2) can be
considered as the eigenstates along the J3. The generalized
eigenfunctions of Ho can be generated by performing the
rotational transformation as[89]

ψ ðα;βÞ
n1;n2ð ~x; ~yÞ ¼ e−iαJ3 e−iβJ2 ψ ðHGÞ

n1;n2ð ~x; ~yÞ; (6)

where α and β can be imaged as the azimuthal and polar
angles for a point on the Poincaré sphere. The eigenfunc-
tions ψ ðα;βÞ

n1;n2 are named the HLGmodes due to the property
that they can be employed to link the HGmodes to the LG
modes by a continuously rotational transformation.

To expand the HLG mode ψ ðα;βÞ
n1;n2ð ~x; ~yÞ with the basis of

the HG modes ½ψ ðHGÞ
n1;n2ð ~x; ~yÞ�, the ladder operators are used

to express the HG mode ψ ðHGÞ
n1;n2ð ~x; ~yÞ as

ψ ðHGÞ
n1;n2ð ~x; ~yÞ ¼

ða†1Þn1�������
n1!

p ða†2Þn2�������
n2!

p ψ ðHGÞ
0;0 ð ~x; ~yÞ: (7)
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From Eqs. (6) and (7), the expansion of the HLG mode
ψ ðα;βÞ
n1;n2ð ~x; ~yÞ involves the property

e−iαJ3 e−iβJ 2ða†1Þn1

¼ ðe−iαJ3e−iβJ2 a†1 e
iβJ2eiαJ3Þn1e−iαJ3e−iβJ2 : (8)

Equation (8) can be further developed to obtain

e−iαJ3 e−iβJ2ða†1Þn1ða†2Þn2 ¼ ðb†1Þn1ðb†2Þn2e−iαJ3e−iβJ2 ; (9)

where

b†1 ¼ e−iαJ3e−iβJ2 a†1 e
iβJ2eiαJ3 ; (10)

b†2 ¼ e−iαJ3e−iβJ2 a†2 e
iβJ2eiαJ3 : (11)

Using Eqs. (8)–(11) and

e−iαJ3 e−iβJ2 ψ ðHGÞ
0;0 ð ~x; ~yÞ ¼ ψ ðHGÞ

0;0 ð ~x; ~yÞ; (12)

the HLG modes can be derived as[80]

ψ ðα;βÞ
n1;n2ð ~x; ~yÞ ¼

ðb†1Þn1�������
n1!

p ðb†2Þn2�������
n2!

p ψ ðHGÞ
0;0 ð ~x; ~yÞ: (13)

Note that Eq. (12) comes from the property of rota-
tional invariance of ground state ψ ðHGÞ

0;0 ð ~x; ~yÞ. The ladder
operators b†1 and b†2 can be explicitly given by

b†1 ¼ a†1 e
−iα∕2 cos

�
β

2

�
þ a†2 e

iα∕2 sin
�
β

2

�
; (14)

b†2 ¼ −a†1 e
−iα∕2 sin

�
β

2

�
þ a†2 e

iα∕2 cos
�
β

2

�
: (15)

Substituting Eqs. (14) and (15) into Eq. (13), the HLG
modes are explicitly expanded as[88,89]

ψ ðα;βÞ
N−m;mð ~x; ~yÞ ¼ e−iNα∕2

XN
s¼0

eisα d
N
2
N
2−s;N2−m

ðβÞψ ðHGÞ
N−s;sð ~x; ~yÞ;

(16)

whereN −m ¼ n1,m ¼ n2, and the expansion coefficients

d
N
2
N
2−s;N2−m

are the Wigner d-matrix elements[90] given by

d
N
2
N
2−s;N2−m

ðβÞ

¼
Xminðm;N−sÞ

v¼maxð0;m−sÞ

� ð−1Þv �����������������������������������������������ðN −mÞ!m!ðN − sÞ!s!p
ðN − s − vÞ!v!ðs −m þ vÞ!ðm − vÞ!

×
�
cos

�
β

2

��
N−mþk−2s

�
sin

�
β

2

��
m−kþ2s

�
: (17)

The expression of Wigner d-matrix elements d
N
2
N
2−s;N2−m

in

Eq. (17) is particularly important for calculating HLG
modes straightforwardly.

Figure 1 shows the calculated patterns of HLG modes
ψ ðα;βÞ
n1;n2ð ~x; ~yÞ with n1 ¼ 3 and n2 ¼ 8 for various values of α

and β. It can be seen that the HLG modes with α ¼ 0 and
β ¼ 0, i.e., along the J3 axis, correspond to the HG modes
ψ ðHGÞ
n1;n2ð ~x; ~yÞ. On the other hand, the HLG modes with α ¼

π∕2 and β ¼ π∕2, i.e., along the J2 axis, correspond to the
LG modes ψ ðLGÞ

n1;n2ð ~x; ~yÞ. Note that the azimuthal quantum
number of LG modes is determined by l ¼ n2 − n1 and the
radial quantum number is given by the smaller of n1 and
n2. In the J 1J3 plane (α ¼ 0), the HLG mode can be found
to represent a continuous rotation of the HG mode from
xy (0° and 90°) to diagonal (45° and 135°) symmetry by
varying the angle of β from 0 to π∕2. In the J 2J3 plane
(α ¼ π∕2), the HLG mode represents a continuous trans-
formation from the HG mode to the LG mode by varying
the angle of β from 0 to π∕2. In the J1J2 plane (β ¼ π∕2),
the HLG mode represents a continuous transformation
from the diagonal HG mode to the LG mode by varying
the angle of β from 0 to π∕2. The OAM per photon for
the HLG mode ψ ðα;βÞ

n1;n2ð ~x; ~yÞ can be analytically found
to be given by <Lz> ¼ ℏðn1 − n2Þ sin α sin β. Except for
α ¼ 0, the HLG mode represents a feature of the travel-
ing wave. By superposition between the HLG mode and
its complex conjugate, the representation of the stand-
ing wave can be given by Re½ψ ðα;βÞ

n1;n2ð ~x; ~yÞ� as well as
Im½ψ ðα;βÞ

n1;n2ð ~x; ~yÞ�. The wave patterns of the standing HLG
mode corresponding to the results in Fig. 1 are shown
in Fig. 2. Note that the standing HLG modes are fre-
quently observed in spherical laser cavities with symmetry
breaking. Furthermore, the standing HLG modes are
equivalent to the IG modes. The advantage of the HLG

Fig. 1. Calculated patterns of HLG modes ψ ðα;βÞ
n1 ;n2ð ~x; ~yÞ with n1 ¼

3 and n2 ¼ 8 for various values of α and β on the Poincaré sphere.
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expression in Eq. (16) is analytical in terms of the Wigner
d-matrix elements.
To begin with, it is introduced that the eigenmodes of

the 1D quantum harmonic oscillator can be expressed as
an integral of the 1D Gaussian wave-packet state over a
trajectorial period. Then, this idea is extended to verify
that the elliptical mode can be derived as an integral of
the 2D Gaussian wave-packet state over the classical orbit
by applying the inverse Fourier transform to the time-
dependent coherent state of the 2D harmonic oscillator.
The quantum Fourier transform is further used to derive
that the HG mode can be completely expressed as a super-
position of the elliptical modes, corresponding to a bundle
of elliptical orbits.
Considering the 1D quantum harmonic oscillator with

the natural frequency ω, the eigenfunctions in the 1D har-
monic oscillator are given by

Ψnð ~x; tÞ ¼ ψnð ~xÞe−iðnþ1∕2Þωt

¼ 1�����������������
2nn !

���
π

pp Hnð ~xÞe− ~x2∕2e−iðnþ1∕2Þωt : (18)

The generating function for the Hermite polynomials is
given by[91]

e−τ2þ2τ ~x ¼
X∞
n¼0

τn

n!
Hnð ~xÞ: (19)

Note that the generating function is valid for all com-
plex values of τ. Setting τ ¼ u∕

���
2

p
and multiplying the

term e−ðjuj2þ ~x2Þ∕2 on both sides of Eq. (19), after some rear-
rangement and in terms of ψnð ~xÞ, the generating function
can be used to express the Gaussian wave packet as

gð ~x; uÞ ¼ π−1∕4e−ð ~x2−2
��
2

p
u ~xþu2þjuj2Þ∕2

¼
X∞
n¼0

un������
n !

p e−juj2∕2ψnð ~xÞ: (20)

The representation of the wave function gð ~x; uÞ is
related to Schrödinger’s coherent state. Substituting
u ¼ �����

N
p

e−iðωtþϕÞ into Eq. (20), the wave function gð ~x; uÞ
can be rewritten as

gð ~x; uÞ ¼ π−1∕4ei ~x
��
2

p
ImðuÞe−iReðuÞImðuÞe−½ ~x− ��

2
p

ReðuÞ�2∕2

¼ eiωt∕2
X∞
n¼0

Nn∕2������
n !

p e−N∕2e−inϕΨnð ~x; tÞ: (21)

This equation indicates that the wave function gð ~x; uÞ
with u ¼ �����

N
p

e−iðωtþϕÞ is the coherent superposition of all
time-dependent eigenstatesΨnð ~x; tÞ. Clearly, the intensity
jgð ~x; uÞj2 represents a Gaussian wave packet with the cen-
tral peak to mimic the classical motion ~x ¼ ���

2
p

ReðuÞ ¼�������
2N

p
cosðωt þ ϕÞ, where the phase factor ϕ is related to

the initial position.
Next, we discuss how to extract the eigenfunction ψnð ~xÞ

from the Gaussian wave packet gð ~x; uÞ via the concept of
the inverse Fourier transformation. For the sake of brev-
ity, we substitute u ¼ �����

N
p

e−iðθþϕÞ into Eq. (21) to obtain

gð ~x; uÞ ¼ π−1∕4e−ð ~x2−2
��
2

p
u ~xþu2þjuj2Þ∕2

¼
X∞
n¼0

Nn∕2�����
n!

p e−N∕2e−inϕψnð ~xÞe−inθ; (22)

where the variable θ ranges from 0 to 2π. Using the
orthogonal property where

1
2π

Z
2π

0
eiðn−n0Þθdθ ¼ δn;n0 ; (23)

the inverse Fourier transformation with u ¼ �����
N

p
e−iθ can

lead to

1
2π

Z
2π

0
gð ~x; uÞeiNθdθ ¼ Nn∕2������

N !
p e−N∕2ψN ð ~xÞ: (24)

Consequently, the eigenfunctions ψnð ~xÞ with n ¼ N can
be expressed as

ψN ð ~xÞ ¼
������
N !

p
π−1∕4

Nn∕2e−N∕2

�
1
2π

Z
2π

0
e−

~x2−2
��
2

p
u ~xþu2þjuj2
2 eiNθdθ

�
: (25)

Equation (25) is exact for calculating the eigenfunctions
ψN ð ~xÞ for any order N . Although the inverse extraction
is straightforward in the 1D harmonic oscillator, the ex-
tension to the 2D or higher-dimensional systems can

Fig. 2. Calculated patterns for the standing waves given by
Re½ψ ðα;βÞ

n1;n2ð ~x; ~yÞ� (golden color) as well as Im½ψ ðα;βÞ
n1;n2ð ~x; ~yÞ� (green

color), corresponding to the results in Fig. 1.
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provide an important insight into the connection between
the quantum eigenstates and classical periodic orbits.
In classical mechanics, the general periodic orbits in the

2D isotropic harmonic oscillator are the elliptical orbits.
To construct the complete quantum-classical correspon-
dence, we apply Schrödinger’s coherent state to the 2D
harmonic oscillator to derive an integral representation
for the elliptical mode related to the classical trajectory
manifestly. Exploiting Schrödinger’s coherent state in
Eq. (20) and the separable property, the time-dependent
coherent state for the 2D harmonic oscillator can be ex-
pressed as[80,87]

gð ~x; ~y; u1; u2Þ ¼
1���
π

p e−
~x2−2

��
2

p
u1 ~xþu2

1
þju1 j2

2 e−
~y2−2

��
2

p
u2 ~yþu2

2
þju2 j2

2

¼
X∞
n1¼0

X∞
n2¼0

u1n1�������
n1!

p u2n2�������
n2!

p e−
ju1 j2þju2 j2

2 ψ ðHGÞ
n1;n2ð ~x; ~yÞ;

(26)

where u1 ¼
�������
N 1

p
e−iðωtþϕ1Þ, u2 ¼

�������
N 2

p
e−iðωtþϕ2Þ, N 1, and

N 2 are related to the oscillation amplitude, and ϕ1 and
ϕ2 are related to the initial position. Clearly, the Gaussian
wave-packet state gð ~x; ~y; u1; u2Þ in Eq. (26) can reveal the
time-dependent quantum-classical correspondence.
Since the ellipticity of the classical orbit depends only

on the relative phase between ϕ1 and ϕ2, the parameters
u1 and u2 are conveniently expressed as

�
u1
u2

�
¼

� �������
N 1

p
e−iðθþϕ∕2Þ�������

N 2
p

e−iðθ−ϕ∕2Þ

�
; (27)

where the variable θ ranges from 0 to 2π, and the phase
factor ϕ determines the ellipticity. Substituting Eq. (27)
into Eq. (26), the wave function gð ~x; ~y; u1; u2Þ can be
rewritten as

gð ~x; ~y; u1; u2Þ

¼ 1���
π

p e−
~x2−2

��
2

p
u1 ~xþu2

1
þju1 j2

2 e−
~y2−2

��
2

p
u2 ~yþu2

2
þju2 j2

2

¼
X∞
n1¼0

X∞
n2¼0

N
n1
2
1�������
n1!

p N
n2
2
2�������
n2!

p e−
N1þN2

2 ψ ðHGÞ
n1;n2ð ~x; ~yÞe−iðn1þn2Þθ

× e−iðn1−n2Þϕ∕2: (28)

The wave function gð ~x; ~y; u1; u2Þ is the time-dependent
coherent state that can be expressed as the superposi-
tion of the stationary coherent states with different eigen-
values n1 þ n2. By using the inverse Fourier transform
and Eq. (23), the stationary coherent state with eigenvalue
n1 þ n2 ¼ N 1 þ N 2 can be expressed as an integral form[80]:

ΦN 1;N 2
ð ~x; ~y;ϕÞ ¼ 1

2π

Z
2π

0
gð ~x; ~y; u1; u2ÞeiðN 1þN 2Þθdθ: (29)

Exploiting the new index K to specify the group of the
degenerate HG modes ψ ðHGÞ

n1;n2ð ~x; ~yÞ with n1 ¼ N 1 −K and

n2 ¼ N 2 þK , the stationary coherent stateΦN 1;N 2
ð ~x; ~y;ϕÞ

can be derived as

ΦN 1;N 2
ð ~x; ~y;ϕÞ

¼ 1
2π

Z
2π

0

1���
π

p e−
~x2−2

��
2

p
u1 ~xþu2

1
þju1 j2

2 e−
~y2−2

��
2

p
u2 ~yþu2

2
þju2 j2

2 eiðN 1þN 2Þθdθ

¼
XN 1

K¼−N 2

�
N ðN 1−KÞ∕2

1����������������������ðN 1−KÞ!p N ðN 2þKÞ∕2
2����������������������ðN 2þKÞ!p e−

N1þN2
2

× e−iðN 1−N 2Þϕ∕2ψ ðHGÞ
N 1−K ;N 2þK ð ~x; ~yÞeiKϕ

�
: (30)

For a given ðN 1;N 2;ϕÞ, the spatial intensity of the sta-
tionary coherent state ΦN 1;N 2

ð ~x; ~y;ϕÞ is exactly concen-
trated on the elliptical orbit. The summation expression
in Eq. (30) is exactly the same as the representation of
the SU(2) coherent state[76,79] that is calculated by using
N 1 þ N 2 þ 1 degenerate HG modes ψ ðHGÞ

N 1−K ;N 2þK ð ~x; ~yÞ.
Here, we remarkably verify that the stationary coherent
state ΦN 1;N 2

ð ~x; ~y;ϕÞ can be expressed as an integral of the
Gaussian wave-packet state over a trajectorial period. The
numerical computation in Eq. (30) can be simply and ef-
ficiently performed without the need of calculating HG

modes ψ ðHGÞ
N 1−K ;N 2þK ð ~x; ~yÞ. More importantly, the quantum-

classical correspondence can be manifested in the Gaus-
sian wave-packet state in Eq. (30).

The discrete Fourier transform fF0;F1; � � � ;FNg of a dis-
crete function ff 0; f 1; � � � ; f Ng and its inverse are given by[92]

Fk ¼
1

N þ 1

XN
n¼0

f ne−i2πnk∕ðNþ1Þ; (31)

f n ¼
XN
k¼0

Fkei2πnk∕ðNþ1Þ: (32)

The quantum Fourier transform is a discrete Fourier
transform upon the quantum state. From Eq. (30), it
can be found that the stationary coherent state
ΦN 1;N 2

ð ~x; ~y;ϕÞ consists of N 1 þ N 2 þ 1 degenerate HG

modes ψ ðHGÞ
N 1−K ;N 2þK ð ~x; ~yÞ, with the weighting coefficient in-

cluding the relative phase term eiKϕ. For the case N 1þ
N 2 ¼ N , we can use the concept of the discrete Fourier
transform to divide the phase factor ϕ into N þ 1 different
values as ϕn ¼ 2πn∕ðN þ 1Þ with n ¼ 0; 1; � � � ;N . Based
on Eqs. (31) and (32), the set fΦN 1;N 2

ð ~x; ~y;ϕnÞg is a com-
plete basis that can be employed to represent the degener-

ate HG mode ψ ðHGÞ
N 1−K ;N 2þK ð ~x; ~yÞ by means of the inverse

quantum Fourier transform. The inverse Fourier transform
for Eq. (30) can be derived as

N ðN 1−KÞ∕2
1�����������������������ðN 1 −KÞ!p N ðN 2þKÞ∕2

2�����������������������ðN 2 þKÞ!p e−
N1þN2

2 ψ ðHGÞ
N 1−K ;N 2þK ð ~x; ~yÞ

¼ 1
N þ 1

XN
n¼0

ΦN 1;N 2
ð ~x; ~y;ϕnÞeiðN 1−N 2−2KÞϕn∕2: (33)
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Without loss of generality, we can use Eq. (33) for
K ¼ 0 to express the HG mode ψ ðHGÞ

N 1;N 2
ð ~x; ~yÞ as

ψ ðHGÞ
N 1;N 2

ð ~x; ~yÞ

¼ CN 1;N 2

1
N þ 1

XN
n¼0

ΦN 1;N 2
ð ~x; ~y;ϕnÞeiðN 1−N 2Þϕn∕2; (34)

where

CN 1;N 2
¼

�
NN 1∕2

1��������
N 1!

p NN 2∕2
2��������
N 2!

p e−
N1þN2

2

�−1

: (35)

Equation (34) indicates that the HG mode ψ ðHGÞ
N 1;N 2

ð ~x; ~yÞ
can be interpreted as a summation of the generalized
elliptical modes ΦN 1;N 2

ð ~x; ~y;ϕnÞ, which are given by an
integral of the Gaussian wave-packet state over the
classical orbit, as shown in Eq. (30). More remarkably,
Eq. (34) provides a general expression for the HG mode

ψ ðHGÞ
N 1;N 2

ð ~x; ~yÞ without involving the Hermite polynomials.
Figure 3 shows the calculated results for ψ ðHGÞ

N 1;N 2
ð ~x; ~yÞ

and ΦN 1;N 2
ð ~x; ~y;ϕnÞ by using Eqs. (30) and (34) with

ðN 1;N 2Þ ¼ ð3; 4Þ. The superposed elliptical modes
ΦN 1;N 2

ð ~x; ~y;ϕnÞ can be seen to have different ellipticities
and different directions for the major axes.
Figures 4 and 5 show the calculated results for the

higher modes with ðN 1;N 2Þ ¼ ð7; 8Þ and ðN 1;N 2Þ ¼
ð3; 12Þ. The range for the ellipticities of the superposed el-
liptical modes ΦN 1;N 2

ð ~x; ~y;ϕnÞ can be found to be consis-
tent with the shape of the spatial pattern jψ ðHGÞ

N 1;N 2
ð ~x; ~yÞj.

In addition to the HG modes, the same approach based
on the generalized elliptical modes can be exploited to re-
present the generalized HLG modes. Replacing the HG

modes ψ ðHGÞ
n1;n2ð ~x; ~yÞ with HLG modes ψ ðα;βÞ

n1;n2ð ~x; ~yÞ in
Eq. (26), the HLG-based coherent state is given by[80,87]

gðα;βÞð ~x; ~y;u1;u2Þ ¼
X∞
n1¼0

X∞
n2¼0

un1
1�������
n1!

p un2
2�������
n2!

p e−
ju1 j2þju2 j2

2 ψ ðα;βÞ
n1;n2ð ~x; ~yÞ:

(36)

By using the ladder operators, the coherent state
~gðα;βÞð ~x; ~y; u1; u2Þ can also be derived as a Gaussian
wave-packet state moving in the elliptical trajectory.
Substituting Eq. (11) into Eq. (36), the coherent state
gðα;βÞð ~x; ~y; u1; u2Þ can be expressed as

Fig. 3. Calculated results for ψ ðHGÞ
N 1;N 2

ð ~x; ~yÞ andΦN1 ;N 2
ð ~x; ~y;ϕnÞ by

using Eqs. (30) and (34) with ðN 1;N 2Þ ¼ ð3; 4Þ.

Fig. 4. Calculated results for ψ ðHGÞ
N1 ;N 2

ð ~x; ~yÞ andΦN 1;N2
ð ~x; ~y;ϕnÞ by

using Eqs. (30) and (34) with ðN 1;N 2Þ ¼ ð7; 8Þ.

Fig. 5. Calculated results for ψ ðHGÞ
N1 ;N 2

ð ~x; ~yÞ andΦN 1;N2
ð ~x; ~y;ϕnÞ by

using Eqs. (30) and (34) with ðN 1;N 2Þ ¼ ð3; 12Þ.
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gðα;βÞð ~x; ~y; u1; u2Þ

¼
X∞
n1¼0

X∞
n2¼0

un1
1

n1!
un2
2

n2!
e−ðju1j2þju2j2Þ∕2ðb†1Þn1ðb†2Þn2ψ0;0ð ~x; ~yÞ:

(37)

The product of the infinite double series in Eq. (37) can
be simplified as a single infinite summation by rearranging
with n1 þ n2 ¼ N . The result is given by

gðα;βÞð ~x; ~y;u1;u2Þ ¼
X∞
N¼0

e−
ju1 j2þju2 j2

2
ðu1b

†
1 þ u2b

†
2ÞN

N !
ψ ðHGÞ
0;0 ð ~x; ~yÞ:

(38)

Using Eqs. (14) and (15) to replace b†1 and b†2 with a†1 and
a†2, the coherent state g

ðα;βÞð ~x; ~y; u1; u2Þ can be rewritten as

gðα;βÞð ~x; ~y;u1;u2Þ ¼
X∞
N¼0

e−
jv1 j2þjv2 j2

2
ðv1a†1 þ v2a

†
2ÞN

N !
ψ ðHGÞ
0;0 ð ~x; ~yÞ;

(39)

where the transformation between ðu1; u2Þ and ðv1; v2Þ is
given by

�
v1
v2

�
¼

2
4 e−iα∕2 cos

	
β
2



−e−iα∕2 sin

	
β
2



eiα∕2 sin

	
β
2



eiα∕2 cos

	
β
2



3
5� u1

u2

�
: (40)

By expressing the summation in Eq. (39) back to the
product of the infinite double series, the coherent state
gðα;βÞð ~x; ~y; u1; u2Þ can be written as

gðα;βÞð ~x; ~y;u1;u2Þ

¼
X∞
m1¼0

X∞
m2¼0

vm1
1

m1!
vm2
2

m2!
e−ðjv1j2þjv2j2Þ∕2ða†1Þm1ða†2Þm2ψ ðHGÞ

0;0 ð ~x; ~yÞ:

(41)

From Eq. (26), the coherent state gðα;βÞð ~x; ~y; u1; u2Þ in
Eq. (41) can be analytically given by

gðα;βÞð ~x; ~y; u1; u2Þ ¼
1���
π

p e−
~x2−2

��
2

p
v1 ~xþv2

1
þjv1 j2

2 e−
~y2−2

��
2

p
v2 ~yþv2

2
þjv2 j2

2 :

(42)

Equation (42) indicates that gðα;βÞð ~x; ~y; u1; u2Þ is a
Gaussian wave packet with the central peak moving in
the elliptical orbit of ~x ¼ ���

2
p

Reðv1Þ and ~y ¼ ���
2

p
Reðv2Þ.

The stationary elliptical mode derived from the wave
packet gðα;βÞð ~x; ~y; u1; u2Þ can be given by

Φðα;βÞ
N 1;N 2

ð ~x; ~y;ϕÞ ¼ 1
2π

Z
2π

0
gðα;βÞð ~x; ~y; u1; u2ÞeiðN 1þN 2Þθdθ:

(43)

The OAM per photon for the elliptical orbital mode
Φðα;βÞ

N 1;N 2
ð ~x; ~y;ϕÞ can be found to be

<Lz> ¼ ℏ½ðn1 − n2Þ sin α sin β
þ 2

�����������
n1n2

p ðcos α sinϕþ cos β sin α cosϕÞ�: (44)

Following the derivation given in Eqs. (33)–(35), the
HLG mode ψ ðHLGÞ

N 1;N 2
ð ~x; ~yÞ can be derived as

ψ ðα;βÞ
N 1;N 2

ð ~x; ~yÞ¼CN 1;N 2

1
Nþ1

XN
n¼0

Φðα;βÞ
N 1;N 2

ð ~x; ~y;ϕnÞeiðN 1−N 2Þϕn∕2:

(45)

Equation (45) indicates that the HLG mode

Ψðα;βÞ
N 1;N 2

ð ~x; ~yÞ can be interpreted as a superposition of the

generalized elliptical modes Φðα;βÞ
N 1;N 2

ð ~x; ~y;ϕÞ, corresponding
to a bundle of elliptical orbits.

The numerical demonstration is the modes

Φðα;βÞ
N 1;N 2

ð ~x; ~y;ϕnÞ with α ¼ π∕2 and β ¼ π∕2. For this case,

the mode ψ ðα;βÞ
N 1;N 2

ð ~x; ~yÞ is the LG mode ψ ðLGÞ
N 1;N 2

ð ~x; ~yÞ.
Figure 6 shows the calculated results forΦðα;βÞ

N 1;N 2
ð ~x; ~y;ϕnÞ

by using the integral formula in Eqs. (42) and (43) with
ðN 1;N 2Þ ¼ ð3; 12Þ, ðα; βÞ ¼ ðπ∕2; π∕2Þ, and ϕn ¼ πn∕8
with n ¼ 0; 1; � � � ; 15. The calculated elliptical modes

Φðα;βÞ
N 1;N 2

ð ~x; ~y;ϕnÞ with ðα; βÞ ¼ ðπ∕2; π∕2Þ can be seen to
have different directions for the major axes, but their
ellipticities are the same. Applying the calculated

Φðα;βÞ
N 1;N 2

ð ~x; ~y;ϕnÞ to Eq. (45), the resulting pattern for

ψ ðα;βÞ
N 1;N 2

ð ~x; ~yÞ, as shown in the central part of Fig. 6, can be

seen to be the LGmode ψ ðLGÞ
N 1;N 2

ð ~x; ~yÞ. Both ψ ðLGÞ
N 1;N 2

ð ~x; ~yÞ and
Φðα;βÞ

N 1;N 2
ð ~x; ~y;ϕnÞ are the features of the traveling waves.

The representation of the standing waves can be given

Fig. 6. Calculated results for ψ ðLGÞ
N 1;N2

ð ~x; ~yÞ and Φðα;βÞ
N 1 ;N2

ð ~x; ~y;ϕnÞ
by using Eqs. (43) and (45) with ðα; βÞ ¼ ðπ∕2; π∕2Þ and
ðN 1;N 2Þ ¼ ð3; 12Þ.
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by Re½ψ ðLGÞ
N 1;N 2

ð ~x; ~yÞ� and Im½ψ ðLGÞ
N 1;N 2

ð ~x; ~yÞ�, which are super-

posed by Re½Φðα;βÞ
N 1;N 2

ð ~x; ~y;ϕnÞ� and Im½Φðα;βÞ
N 1;N 2

ð ~x; ~y;ϕnÞ�.
The calculated results for the standing waves

Re½ψ ðLGÞ
N 1;N 2

ð ~x; ~yÞ� with ðN 1;N 2Þ ¼ ð3; 12Þ are shown
in Fig. 7.
Figure 8 shows the case for the calculated results with

ðN 1;N 2Þ ¼ ð4; 11Þ, ðα; βÞ ¼ ð2π∕5; 2π∕5Þ, and ϕn ¼ πn∕8
with n ¼ 0; 1; � � � ; 15. The calculated elliptical modes
Φðα;βÞ

N 1;N 2
ð ~x; ~y;ϕnÞ with ðα; βÞ ¼ ð2π∕5; 2π∕5Þ can be seen

to have different ellipticities and different directions for
the major axes.

Abramochkin and Volostnikov originally used an AMC
formed by a matched pair of cylindrical lenses to generate
the so-called HLG beams[69]. The HLG beams, a continu-
ous evolution between HG and LG beams, can succes-
sively be realized by rotating the cylindrical lens about
the optical axis by an angle ζ, as depicted in Fig. 9. The
LG modes are just the HLG modes with ζ ¼ π∕4. The
HLG modes in the successive transformation lying be-
tween the HG and LG modes display a plentiful evolution
of point dislocations and edge dislocations. The AMC
mode converter was later used to generate the light fields
with nonzero OAM[68]. The traditional AMC needs two
precisely spaced and aligned cylindrical lenses[68,69]. A
modified AMC based on a single cylindrical lens was dis-
covered to generate the optical vortex beams more quickly
and effectively[93,94]. Here, we make a review to theoreti-
cally characterize the propagation evolution of the vortex
structures of HG beams transformed by a single lens AMC
with an arbitrary angle[8].

The laser beam corresponding to the HG mode with the
transverse indices ofm and n in the forward propagation is
given by[3,4]

ΨðHGÞ
n;m ðx; y; zÞ
¼ ψ ðHGÞ

n;m ð ~x; ~yÞe−iðnþ1∕2ÞθG;x ðzÞe−iðmþ1∕2ÞθG;yðzÞ

× eikx
2∕2RxðzÞeiky2∕2RyðzÞ; (46)

where ~x ¼ ���
2

p
x∕wxðzÞ, ~y ¼ ���

2
p

y∕wyðzÞ, wxðzÞ, and wyðzÞ
are the beam radii, θG;xðzÞ and θG;yðzÞ are the Gouy
phases, and RxðzÞ and RyðzÞ are the wavefront curvatures.
The configuration for creating a vortex beam from an HG
beam with a single cylindrical lens is shown in Fig. 9(a).
The key feature is that a spherical lens is used to focus the
input HG beam to have a new waist at a distance f just
ahead of a cylindrical lens with focal length f and a new
Rayleigh range zR equal to f . To derive the HG beam
transformed by a single lens AMC with arbitrary angle
ζ, the eigenfunction basis needs to change from the xy-
Cartesian coordinate system to the x 0y0-Cartesian coordi-
nate system in which the origin is kept fixed and the x 0

and y0 axes are the active and inactive components,

Fig. 7. Calculated results for the standing waves of
Re½ψ ðLGÞ

N1 ;N 2
ð ~x; ~yÞ� and Re½Φðα;βÞ

N 1;N 2
ð ~x; ~y;ϕnÞ� corresponding to the

traveling wave shown in Fig. 6.

Fig. 8. Calculated results for ψ ðα;βÞ
N1 ;N 2

ð ~x; ~yÞ and Φðα;βÞ
N1 ;N 2

ð ~x; ~y;ϕnÞ
by using Eqs. (43) and (45) with ðα; βÞ ¼ ð2π∕5; 2π∕5Þ and
ðN 1;N 2Þ ¼ ð4; 11Þ.

Fig. 9. (a) Configuration of the single lens mode converter. Two
vertical lines show the positions of the beam waists produced
by the spherical matching lens and by the active axis of the
cylindrical lens with focal length f . (b) Relationship between
the xy-Cartesian coordinate system and the x 0y0-Cartesian coor-
dinate system. The x 0 and y0 axes are the active and inactive
components of the cylindrical lens.
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respectively, as shown in Fig. 9(b). The original coordi-
nates (x, y) of a point Q are related to its new coordinates
(x 0, y0) by

�
~x 0

~y0

�
¼

�
cos ζ − sin ζ
sin ζ cos ζ

��
~x
~y

�
: (47)

In terms of Wigner d coefficients in Eq. (17), the

ψ ðHGÞ
N−m;mð ~x; ~yÞ can be expanded with the basis

ψ ðHGÞ
N−s;sð ~x 0; ~y0Þ as[8]

ψ ðHGÞ
N−m;mð ~x; ~yÞ ¼

XN
s¼0

d
N
2
N
2−s;N2−m

ð2ζÞψ ðHGÞ
N−s;sð ~x 0; ~y0Þ: (48)

The arrangement shown in Fig. 9(a) is used to consider
the effects of the cylindrical lens in the region of z > 0. The
beam waists in the x 0 (active) and y0 (inactive) axes are
separable and given by

wx 0 ðzÞ ¼ wo

���������������������������������������
1þ ½ðz − zRÞ∕zR�2

q
; (49)

wy0 ðzÞ ¼ wo

���������������������������������������
1þ ½ðz þ zRÞ∕zR�2

q
: (50)

Note that zR is equal to the focal length f of the cylin-
drical lens in the AMC configuration. In addition, the
Gouy phases in the x 0 (active) and y0 (inactive) axes
are different and given by

θG;x 0 ðzÞ ¼
π

2
þ arctan ½ðz − zRÞ∕zR�; (51)

θG;y0 ðzÞ ¼ arctan ½ðz þ zRÞ∕zR�: (52)

The wavefront curvatures in the x 0 (active) and y0

(inactive) axes are also different and given by

1
Rx 0 ðzÞ

¼ z − zR
ðz − zRÞ2 þ z2R

; (53)

1
Ry0 ðzÞ

¼ z þ zR
ðz þ zRÞ2 þ z2R

: (54)

Using Eqs. (49)–(54) to characterize the phase variation
for each state ψ ðHGÞ

N−s;sð ~x 0; ~y0Þ in Eq. (48), the wave function
for the HG beam transformed by a single lens AMC with
arbitrary angle ζ in the propagation evolution can be
derived as[8]

ΨN−m;mðx;y;z;ζÞ
¼ e−i½ðNþ1∕2ÞθG;y0 ðzÞþθG;x0 ðzÞ∕2�ψ ðα;βÞ

N−m;mð ~x 0; ~y0ÞeiΩð ~x
0;~y0;zÞ; (55)

where ~x 0 ¼ ���
2

p
x 0∕wx 0 ðzÞ, ~y0 ¼

���
2

p
y0∕wy0 ðzÞ, β ¼ 2ζ, αðzÞ ¼

θG;x 0 ðzÞ− θG;y0 ðzÞ, and

Ωð ~x 0; ~y0; zÞ ¼ 1
2zR

½zð ~x 02 þ ~y02Þ− zRð ~x 02 − ~y02Þ�: (56)

Using Eqs. (51) and (52), the Gouy phase difference
αðzÞ can be found to increase from 0 to π∕2 for z from
0 to ∞. The wave pattern of the converted beam
ΨN−m;mðx; y; z; ζÞ is exclusively determined by the wave

function ψ ðα;βÞ
N−m;mð ~x 0; ~y0Þ in Eq. (55). The representation

of ΨN−m;mðx; y; z; ζÞ can be related to the SU(2) transform

for the HG mode ψ ðHGÞ
N−s;sð ~x 0; ~y0Þ given in Eq. (16). Further-

more, the converted beamΨN−m;mðx; y; z; ζÞ in the far field
z → ∞ with ζ changing from 0 to π∕4 is associated with
the HLG beam to be transformed from the HG to the
LG beam. Specifically, the beam ΨN−m;mðx; y; z → ∞; ζÞ
corresponds to the HG and LG modes for ζ ¼ 0 and
ζ ¼ π∕4, respectively. On the other hand, the phase
functions Ωð ~x 0; ~y0; zÞ in Eq. (56) resulting from the wave-
front curvatures in Eqs. (53) and (54) do not involve
the overall wave patterns of the converted beams
ΨN−m;mðx; y; z; ζÞ, but significantly affect their phase
structures in the propagation. It has been demonstrated
that the HG modes can be straightforwardly generated
from an off-axis end-pumped Nd-doped vanadate laser[5,8].
The laser cavity configuration is a simple concave-plano res-
onator. The laser medium is an a-cut 0.2 at.% Nd:YVO4

crystal with both side coated for antireflection at 1064 nm.
The pump source was a 2.5 W 808 nm fiber-coupled laser
diode with a core diameter of 100 μm and a numerical
aperture of 0.16. Further detailed descriptions for the exper-
imental setup can be found in the previous papers[5,8].

In the following, we exploit the derived formula to ana-
lyze the vortex beams that are generated from the trans-
formation of the HG beams by a single lens AMC. The
phase structures in the propagation evolution are also
numerically manifested. We first demonstrate the trans-
formation of the ψ ðHGÞ

N ;0 ðx; y; zÞ beam by a single lens AMC.
Figure 10 shows experimental results (first column) and

theoretical calculations (second column) for the propa-
gation evolution of the converted beam Ψ9;0ðx; y; z; ζÞ
with ζ ¼ π∕4. Theoretical calculations can be found to
agree excellently with experimental results for all propa-
gating positions. The third column in Fig. 10 shows
numerical results for the phase structures calculated by
Θn;mðx; y; z; ζÞ ¼ arctan ½ImðΨn;mÞ∕ReðΨn;mÞ�, where the
relative range is given by the unit ωo∕

���
2

p
. It can be found

that the phase structure outside the central part at z ¼ 0
displays the hyperbolic feature. This characteristic is due
to the fact that the phase factor Ωð ~x 0; ~y0; zÞ in Eq. (56) for
z ¼ 0 is the hyperbolic form −ð ~x 02 − ~y02Þ∕2. On the other
hand, the phase factor Ωð ~x 0; ~y0; zÞ for z → ∞ is the circu-
lar expression zð ~x 02 þ ~y02Þ∕2zR. Consequently, the phase
structures outside the central part change from the hyper-
bolic feature at z ¼ 0 to the elliptical shape in the propa-
gation and finally to the circular form in the far field for
z → ∞, as seen in the third column in Fig. 10. Near the
central part, numerous isolated singularities appear in
the phase structure for 0 < z < zR. There are N ¼ 9
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singularities with the topological charge one to be located
as a linear array for z > zR, as seen in the third column of
Fig. 10. In the far field, the N singularities are merged into
a single vortex with topological charge N , as the LG
doughnut beam shown in the last row of Fig. 10.
Next, we discuss the case of the beam transformation for

the ψ ðHGÞ
n;m ðx; y; zÞ mode with n > m > 0. Figure 11 shows

experimental results (first column) and theoretical calcu-
lations (second column) for the propagation evolution of
the converted beam Ψ9;4ðx; y; z; ζÞ with ζ ¼ π∕4. Theoreti-
cal calculations are also found to agree very well with ex-
perimental results for all propagating positions. Like the
case in Fig. 10, the phase structures outside the central
part change from the hyperbolic feature at z ¼ 0 to the
elliptical shape at z > 0 and finally to the circular form
in the far field, as shown in the third column in Fig. 11.
The phase structure near the central part can be seen
to display a 2D array of isolated singularities for a short
propagation distance z < zR. In the far field, the 2D sin-
gularity array finally evolves into a single vortex with
topological charge n −m ¼ 5, as shown in the last row
of Fig. 11.

The following is to demonstrate the beam transforma-
tion for the square HG modes ψ ðHGÞ

m;m ðx; y; zÞ. Figure 12
shows experimental results (first column) and theoretical
calculations (second column) for the propagation evolu-
tion of the converted beam Ψ8;8ðx; y; z; ζÞ with ζ ¼ π∕4.
Once again, theoretical calculations are in excellent agree-
ment with experimental results for all propagating posi-
tions. The phase structures outside the central part are
generally similar to the discussed cases for a short propa-
gation distance z < zR, and the phase structure near the
central part displays a 2D array of isolated singularities
that are distributed in a rhombus shape, as seen in the
third column of Fig. 12 for the result of z ¼ 0.7zR. Due
to the square symmetry for the HG ψ ðHGÞ

m;m ðx; y; zÞ modes,
all singularities annihilate, and no net vortices can exist
in the far field, as shown in the last row of Fig. 12.

We finally present the beam transformation for the
ψ ðHGÞ
n;m ðx; y; zÞ modes with ζ ≠ π∕4. Figure 13 shows exper-

imental results (first column) and theoretical calculations
(second column) for the propagation evolution of the con-
verted beam Ψ9;4ðx; y; z; ζÞ with ζ ¼ −5π∕36. Once again,
theoretical calculations are in excellent agreement with

Fig. 10. Experimental results (first column), numerical wave
patterns (second column), and phase structures (third column)
for the propagation evolution of the converted beam
Ψ9;0ðx; y; z; ζÞwith ζ ¼ π∕4. The number in the right side denotes
the size of the pattern with the unit ωo∕

���
2

p
.

Fig. 11. Experimental results (first column), numerical wave
patterns (second column), and phase structures (third column)
for the propagation evolution of the converted beam
Ψ9;4ðx; y; z; ζÞwith ζ ¼ π∕4. The number in the right side denotes
the size of the pattern with the unit ωo∕

���
2

p
.
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experimental observations for all propagating positions.
The overall evolution of the phase structure in the propa-
gation is like the case of ζ ¼ π∕4 to display the vortex
array just behind the AMC. The phase structure near the
central part displays a 2D array of isolated singularities for
a short propagation distance z < zR. As shown in the last
row of Fig. 13, the 2D singularity array in the far field
finally evolves into a central vortex with charge one. There
are also several vortices to be distributed around the cen-
tral vortex. Due to ζ ≠ π∕4, the topological charge of the
central vortex is different from the case with ζ ¼ π∕4,
in which the topological charge is given by n −m ¼ 5.
Further research about the vortex distribution can be
found in a previous paper[95].
In conclusion, we have thoroughly overviewed the theo-

retical description of the HLG modes from the representa-
tion of SU(2) in the Jordan–Schwinger map. Furthermore,
we have discussed the derivation of representing the ellip-
tical modes as an integration of the Gaussian wave-packet
state over the elliptical trajectory. We have also over-
viewed the relationship between the HLG modes and el-
liptical modes based on the quantum Fourier transform.

Finally, we have exploited the wave representation of
the HLG modes to characterize the propagation evolution
of the vortex structures of HG beams transformed by a
single lens AMC. It is believed that the present review
can provide not only a complete representation for trans-
verse modes, but also a pedagogical insight into quantum
physics.

This work was supported by the Ministry of Science
and Technology of Taiwan (Contract No. 108-2119-M-
009-005).
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