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Goodness of fit is demonstrated for theoretical calculation of z-scan data based on beams propagating in the non-
linear medium and the Fresnel–Kirchhoff diffraction integral in experiments with high nonlinear refraction and
absorption. The constancy of nonlinear optical parameters is achieved regardless of sample thickness and laser
intensity, which clarifies the physical significance of optical parameters. We have obtained γ = 2.0 × 10−19 m2/W
and β= 5.0 × 10−13 m/W for carbon disulfide excited by a pulsed laser at 800 nm with pulse duration of 35 fs,
which are independent of sample thickness and laser intensity. Affirming constancy of the extracted parameters
to the incident light intensity may become a practice to verify the goodness of the z-scan experiment.
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The z-scan technique, after being introduced by Sheik-
Bahae et al. in 1989[1,2], has been widely adopted for
characterizing nonlinear optical coefficients of optical
materials. Theoretical curves calculated by the model
can fit experimental data elegantly for z-scan experiments
with continuous-wave lasers[3,4]. However, in many reports
adopting pulsed lasers, especially with femtosecond (fs)
pulse width, poor fitting has been quite commonly encoun-
tered with the accompanying large deviation between
theoretical curves and experimental data, both for open-
aperture (OA) transmittance[5–7] and closed-aperture (CA)
transmittance[8–11]. Furthermore, there is a lack of consis-
tency between the nonlinear parameters extracted from
the same substance in different reports. For example,
the extracted results of carbon disulfide (CS2) may span
over 10−18 − 10−20 m2∕W for the third-order nonlinear
refraction (NLR) coefficient (γ) and 10−13 − 10−16 m∕W
for the third-order nonlinear absorption (NLA) coefficient
(β), respectively[8,12–26]. Such a large discrepancy of ex-
tracted parameters and the phenomenon of poor fitting
cannot be simply attributed to experimental errors, but
needs theoretical re-examination.
Sheik-Bahae’s model (SBM)[1,2] adopts the thin sample

approximation, based on which the intensity distribution
in a plane behind the sample is analytically calculated using
the classical nonlinear differential equation (NLDE)[27–29].
It has been pointed out that the effect of optical NLR or
NLA is influenced by the nonlinear optical coefficient and
the sample thickness, as well as the laser intensity[1,2,8].
Obviously, sample thickness is not the only factor affect-
ing accuracy, but the comprehensive effect of experimen-
tal conditions. The extracted nonlinear optical coefficients

show dependence on laser intensity[8], which is against
common understanding of physics. Efforts have been
made to explore new theoretical approaches, such as the
Huygens–Fresnel principle[30], Gaussian beam characteris-
tic parameter transformation[31], classical NLDE combined
with Gaussian decomposition based on temporal differen-
tial[32], and modified NLDE by nonlocal principle com-
bined with Gaussian decomposition[33,34]. The aspect of
numerical calculation has been investigated as well, such
as FFT[35] and classical NLDE combined with the Fresnel–
Kirchhoff diffraction principle[36]. The curve fitting of
CA transmittance data can be improved for the case
with large NLR by the use of the Fresnel–Kirchhoff dif-
fraction principle for calculating the CA electric field[30,36],
but there is currently no effective measure to improve the
curve fitting of OA transmittance data. Note that the
adoption of NLDE[32–34] is still based on the thin sample
approximation[1,2], and thus it is difficult to make radical
improvements. Theoretical models adequate for a thick
sample with strong nonlinearity have been investigated.
The nonlinear paraxial wave equation (NPWE) in expres-
sion of NLR and NLA coefficients was solved and followed
by the Huygens–Fresnel principle[37], and the nonlinear
Schrödinger equation was solved using a finite difference
beam propagation approach[38]. A generic approach for
z-scan calculation has to be based on solving the wave
equation for a nonlinear medium. Nevertheless, the existing
issue of inconsistent nonlinear coefficients extracted from
theoretical fitting with z-scan experimental data in differ-
ent experimental conditions has yet to be addressed, which
is essential for the application of the nonlinear character-
istics of materials[39,40].

COL 18(7), 071903(2020) CHINESE OPTICS LETTERS July 2020

1671-7694/2020/071903(5) 071903-1 © 2020 Chinese Optics Letters

mailto:ting.mei@ieee.org
mailto:ting.mei@ieee.org
mailto:ting.mei@ieee.org
http://dx.doi.org/10.3788/COL202018.071903
http://dx.doi.org/10.3788/COL202018.071903


In this Letter, we investigate the consistency of nonlinear
optical coefficients extracted from z-scan measurements
with different sample thicknesses and laser intensities.
To solve the wave equation, the propagation of Gaussian
beam in the nonlinear medium[41] is utilized, and the
Fresnel–Kirchhoff diffraction integral is applied to further
obtain the intensity distribution in the aperture plane.
The experimental data of CS2 are fitted by this beam
propagation diffraction model (BPDM) for samples with
different thicknesses at different laser intensities. We show
that nonlinear optical coefficients extracted by BPDM
maintain constancy regardless of sample thickness and
laser intensity, through which experimentalists can verify
the reliability of their obtained results.
In the z-scan configuration, the sample of a thickness L

is placed at a position z, with z ¼ 0 for the waist position
of the incident Gaussian beam. The electric field of a
propagating beam inside the sample is expressed using
a coordinate system (r; zb) as

Eðr; zbÞ ¼ Uðr; zbÞeikzb (1)

in slowly varying envelope approximation. Using Eq. (1),
the wave equation can be rewritten as

∂U ðr; zbÞ∕∂zb ¼ ðD̂ þ ŜÞU ðr; zbÞ; (2)

where D̂ ¼ −iΔt∕2k and Ŝ ¼ −ðik∕2n2
0Þð1− n0

2 þ χÞ.
Here, Δt is the transverse Laplacian, n0 is the real part
of the linear refractive index, and k is the wave vector.
The electric susceptibility χ only retains terms up to
the third order, i.e., χ ¼ χð1Þ þ χð3ÞjU ðr; zbÞj2, but may
be extended to incorporate higher-order terms for generic
cases. D̂ accounts for the diffraction effect by the linear
beam propagation in the medium, and Ŝ accounts for the
nonlinear absorption effect and the NLR effect. The SBM
takes the thin sample approximation such that the beam

diffraction during propagation in the sample is ignored.
In contrast, with beam propagation, Eq. (2) takes into ac-
count the diffraction due to inhomogeneity of the medium,
which is caused by the NLR resulting from the electric
field distribution throughout the sample, thus eliminating
the need for the thin sample approximation.

The numerical solution of Eq. (2) starts from the
entrance plane of the sample, i.e., Uðr; zb ¼ 0Þ, to the exit
plane, i.e., U ðr; zb ¼ LÞ, iteratively. Upon exiting the
sample, the electric field is expressed as

EeðrÞ ¼ U ðr; zb ¼ LÞeikL: (3)

After emerging from the sample, the beam reaches the
aperture plane via Fraunhofer diffraction. The electric
field at the aperture plane can be calculated by the
Fresnel–Kirchhoff diffraction integral:

EaðρÞ ¼
k
id

eik
�
dþρ2

2d

� Z ∞

0
EeðrÞJ0

�
krρ
d

�
eik

�
dþr2

2d

�
rdr; (4)

where d is the distance between the exit plane of the
sample and the aperture plane for signal detection. The
normalized transmittance can be obtained by spatially in-
tegrating EaðρÞ in the aperture for the CA measurement
and by spatially integrating EeðrÞ in the exit plane of the
sample for the OA measurement. Here, we co-fit OA and
CA experimental data to obtain two nonlinear coefficients
simultaneously by joining numerical calculation with the
genetic algorithm.

A 50 fs pulsed laser at a wavelength of 800 nm with a
pulse repetition frequency of 1 kHz was adopted in the
z-scan experiment. Samples were CS2 contained in cuvettes
with inner gaps of 0.5 mm, 1 mm, and 2 mm and were
tested at peak intensities of 967 GW∕cm2, 764 GW∕cm2,
and 500 GW∕cm2. Figure 1 shows the measured OA and
CA transmittances by scanning the sample position at z.

Fig. 1. (a)–(i) OA and (a’)–(i’) CA normalized transmittances as functions of the position z of CS2 samples with thicknesses of (a)–(c),
(a’)–(c’) 2 mm, (d)–(f), (d’)–(f’) 1 mm, and (g)–(i), (g’)–(i’) 0.5 mm under intensities of (a), (d), (g), (a’), (d’), (g’) 967 GW∕cm2, (b),
(e), (h), (b’), (e)’, (h’) 764 GW∕cm2, and (c), (f), (i), (c’), (f’), (i’) 500 GW∕cm2. Green circles represent experimental data. Fitting
results are given by BPDM (red lines) and SBM (blue dashed lines), respectively.
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The normalized transmittances in OA and CA cases can be
nicely fitted. The curve fittings shown in Fig. 1 visually
demonstrate that BPDM has excellent performance for
all sample cases. Chi-square goodness of fit test K2 was de-
fined as K 2 ¼ P ðMj − CjÞ2∕Cj , where Mj and Cj are
the jth normalized transmittance data obtained by z-scan
measurements or numerical calculation by the use of the
theoretical model of the z-scan technique, respectively.
For clarity, the magnitudes of chi-square goodness of fit test
K2 are shown in Fig. 1 as the quantitative measure to their
curve-fitting performances.
Since NLR is ignored in the SBM fitting of OA trans-

mittance data when solving the NLA coefficient, the
intensity profiles maintain the Gaussian curve shape.
However, as revealed by BPDM in Fig. 2(c), the intensity
distribution profile strongly deviates from the Gaussian
distribution due to the diffraction effect of strong NLR at
the position of the laser waist, i.e., z ¼ 0 mm. In practice,
the SBM fitting is usually forced to match the experimen-
tal data at z ¼ 0 mm and the both ends simultaneously.
Thus, while achieving the best agreement with the non-
Gaussian intensity profile at z ¼ 0 mm [Fig. 2(c)], NLA

is apparently underestimated, giving a higher intensity
distribution profile [Figs. 2(b) and 2(d)] and higher OA
transmittance [Fig. 2(a)] in regions between z ¼ 0 mm
and the two ends, e.g., at z ¼ −25; 20 mm. Also, fitting
the numerically calculated field to a Gaussian distribu-
tion[35] is inadequate in such a situation.

The different phase distribution profiles calculated by
two models shown in Figs. 2(b’)–2(d’) can explain the
differences in the CA transmittances. At z ¼ 0 mm, the
phase lag obtained obviously deviates from the Gaussian
curve shape. Hence, the assumption of Gaussian distribu-
tions of intensity and phase shift in SBM deviates from
the real situation and makes it hard to fit skewed CA
transmittance curves, i.e., with a narrow peak and wide
valley herein, which had also been observed in previous
reports[32,42]. The Fresnel–Kirchhoff diffraction principle

Fig. 2. Fitting curves of (a) OA and (a’) CA transmittances by
two models for sample thickness of 1 mm and laser peak intensity
of 967 GW·cm−2 shown in Figs. 1(d) and 1(d’), with (b)–(d) in-
tensity distributions and (b’)–(d’) phase distributions at the exit
plane of the sample at z ¼ −25, 0, 20 mm. Blue dashed lines and
red lines are curves simulated using SBM and BPDM, respec-
tively. The brown dotted lines in (b)–(d), (b’)–(d’) are plotted
at the entrance plane of the sample.

Fig. 3. (a) NLA and (b) NLR coefficients versus I 0·L obtained
by fitting the z-scan data shown in Fig. 1 using SBM (hollow
marks) and BPDM (solid marks) for samples of thicknesses
0.5 mm, 1 mm, and 2mm (orange circle, brown triangle, and pink
square marks). Blue–violet diamond marks are results obtained
from the literature[8,12–14,16]. The 95% confidence interval bars are
drawn with magnification factors of 1, 5, and 10 for results of the
literature, SBM, and BPDM.
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should be applied to calculate the electric field distribution
at the far-field aperture plane instead, as the Gaussian
decomposition method does not have good performance
on non-Gaussian beams.
By plotting the extracted nonlinear optical coefficients γ

and β versus the product of the incident light intensity
and the sample thickness I 0·L as shown in Fig. 3, we
see that BPDM provides constant results to I 0·L,
i.e., β ¼ 5.0 × 10−13 m∕W and γ ¼ 2.0 × 10−19 m2∕W,
denoting that the contribution of the fifth-order nonline-
arity or other higher-order nonlinearity is negligible within
the experimental range of laser intensity. By taking the
aforementioned γ and β values, the lines of q0 ¼ 1
and ΔΦ0 ¼ 1 are denoted in Fig. 3 for q0 ¼ βI 0L and
ΔΦ0 ¼ kγI 0L. It is seen that the results of these two mod-
els are close for q0 < 1 and ΔΦ0 < 1, as the limiting con-
dition for applying SBM[1,2]. However, practically, it is
hard to comply with this condition without knowing
the values of β and γ beforehand. A series of experimental
results taken from references are denoted in Fig. 3, and it is
seen that some fall out of such a regime. In contrast,
BPDM sets z-scan experiments free from this limiting con-
dition. Moreover, the 95% confidence interval becomes
broad with decreasing I 0·L, because experimentally
the signal-to-noise ratio becomes poor upon a reduced
nonlinear optical signal. This trend is also illustrated by
the reported results. By applying BPDM, the experiment
can be done at high levels of I 0·L to acquire more accu-
rate results. Also, the constancy of extracted nonlinear
optical coefficients via varying incident light intensity
or sample thickness can be used to confirm whether a
z-scan experiment is properly conducted, which is exactly
the significance of discussing the sample thickness and
light intensity[43,44].
In conclusion, the issue of inconsistent nonlinear optical

coefficients extracted from z-scan measurements with dif-
ferent sample thicknesses and different laser intensities
has been addressed. The BPDM is developed to solve the
wave equation based on the propagation of the Gaussian
beam in a nonlinear medium and obtain the far-field
intensity distribution in the aperture plane based on the
Fresnel–Kirchhoff diffraction integral principle. NLR, NLA,
and diffraction for beam propagation within a sample will
all have an effect on the electric field redistribution with
propagation, including intensity and phase, which have
been taken into account. Hence, thin sample approxima-
tion is eliminated, and the laser intensity need not be
deliberately limited to trade off experimental accuracy.
The determined third-order nonlinear parameters of
CS2 (β ¼ 5.0 × 10−13 m∕W and γ ¼ 2.0 × 10−19 m2∕W)
maintain constancy regardless of sample thickness and
laser intensity, which not only clarifies the physical signifi-
cance of optical parameters but also reveals negligible
contributions of the fifth-order nonlinearity within the
experimental range of laser intensity. The constancy of ex-
tracted parameters to the incident light intensity can be
taken as a measure to check the goodness of the z-scan
measurement.

This work was supported by the National Natural
Science Foundation of China (NSFC) (Nos. 91950207,
61675171, and 61675169), the Shaanxi Provincial Key
R&D Program (No. 2018KW-009), and the Funda-
mental Research Funds for the Central Universities
(Nos. 3102017HQZZ022 and 3102017zy021).

References
1. M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, Opt. Lett. 14,

955 (1989).
2. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W.

Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
3. K. K. Nagaraja, S. Pramodini, P. Poornesh, M. P. Telenkov, and

I. V. Kityk, Physica B 512, 45 (2017).
4. N. A. Zulina, M. A. Baranov, K. I. Kniazev, V. O. Kaliabin, I. Y.

Denisyuk, S. U. Achor, and V. E. Sitnikova, Opt. Laser Technol.
103, 396 (2018).

5. M. B. M. Krishna, N. Venkatramaiah, R. Venkatesan, and D. N.
Rao, J. Mater. Chem. 22, 3059 (2012).

6. K. P. Wang, J. Wang, J. T. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Y.
Feng, X. Y. Zhang, B. X. Jiang, Q. Z. Zhao, H. Z. Zhang, J. N.
Coleman, L. Zhang, and W. J. Blau, ACS Nano 7, 9260 (2013).

7. R. A. Ganeev, M. Baba, A. I. Ryasnyansky, M. Suzuki, and H.
Kuroda, Opt. Commun. 240, 437 (2004).

8. R. A. Ganeev, A. I. Ryasnyansky, M. Baba, M. Suzuki, N. Ishizawa,
M. Turu, S. Sakakibara, and H. Kuroda, Appl. Phys. B 78, 433
(2004).

9. S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen,
and D. Tang, Opt. Express 21, 2072 (2013).

10. X. L. Zhang, Z. B. Liu, X. C. Li, Q. Ma, X. D. Chen, J. G. Tian, Y. F.
Xu, and Y. S. Chen, Opt. Express 21, 7511 (2013).

11. B. Can-Uc, R. Rangel-Rojo, A. Peña-Ramírez, C. B. de Araújo, H. T.
M. C. M. Baltar, A. Crespo-Sosa, M. L. Garcia-Betancourt, and A.
Oliver, Opt. Express 24, 9955 (2016).

12. M. Falconieri and G. Salvetti, Appl. Phys. B 69, 133 (1999).
13. S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux,

E. Koudoumas, and X. Michaut, Chem. Phys. Lett. 369, 318
(2003).

14. A. Gnoli, L. Razzari, and M. Righini, Opt. Express 13, 7976
(2005).

15. T. Kawazoe, H. Kawaguchi, J. Inoue, O. Haba, and M. Ueda, Opt.
Commun. 160, 125 (1999).

16. H. S. Albrecht, P. Heist, J. Kleinschmidt, and D. V. Lap, Appl. Phys.
B: Photophys. Laser Chem. 57, 193 (1993).

17. S. Couris, E. Koudoumas, F. Dong, and S. Leach, J. Phys. B: Atom.
Mol. Opt. Phys. 29, 5033 (1996).

18. M. Reichert, H. Hu, M. R. Ferdinandus, M. Seidel, P. Zhao, T. R.
Ensley, D. Peceli, J. M. Reed, D. A. Fishman, S. Webster, D. J.
Hagan, and E. W. Van Stryland, Optica 1, 436 (2014).

19. G. Boudebs and K. Fedus, J. Appl. Phys. 105, 103106 (2009).
20. D. G. Kong, Q. Chang, H. Ye, Y. C. Gao, Y. X. Wang, X. R. Zhang,

K. Yang, W. Z. Wu, and Y. L. Song, J. Phys. B: Atom. Mol. Opt.
Phys. 42, 065401 (2009).

21. R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki,
M. Turu, S. Sakakibara, and H. Kuroda, Opt. Commun. 231, 431
(2004).

22. X. Liu, S. Guo, H. Wang, N. Ming, and L. Hou, J. Nonlinear Opt.
Phys. Mater. 10, 431 (2001).

23. I. P. Nikolakakos, A. Major, J. S. Aitchison, and P. W. E. Smith,
IEEE J. Sel. Top. Quantum Electron. 10, 1164 (2004).

24. K. Minoshima, M. Taiji, and T. Kobayashi, Opt. Lett. 16, 1683
(1991).

COL 18(7), 071903(2020) CHINESE OPTICS LETTERS July 2020

071903-4



25. D. I. Kovsh, S. Yang, D. J. Hagan, and E. W. Van Stryland, Appl.
Opt. 38, 5168 (1999).

26. X. Q. Yan, Z. B. Liu, S. Shi, W. Y. Zhou, and J. G. Tian, Opt.
Express 18, 26169 (2010).

27. S. Chen, S. Yang, Y. Huang,W. Jiao, G. Fan, and Y. Gao, Chin. Opt.
Lett. 18, 011901 (2020).

28. Y. Han, B. Gu, S. Zhang, G. Rui, J. He, and Y. Cui, Chin. Opt. Lett.
17, 061901 (2019).

29. X. Peng, Y. Zhao, Y. Wang, G. Hu, L. Yang, and J. Shao, Chin. Opt.
Lett. 16, 051601 (2018).

30. R. E. Samad and N. D. Vieira, Jr., J. Opt. Soc. Am. B: Opt. Phys. 15,
2742 (1998).

31. C. H. Kwak, Y. L. Lee, and S. G. Kim, J. Opt. Soc. Am. B: Opt. Phys.
16, 600 (1999).

32. S. Q. Chen, Z. B. Liu, W. P. Zang, J. G. Tian, W. Y. Zhou, F.
Song, and C. P. Zhang, J. Opt. Soc. Am. B: Opt. Phys. 22, 1911
(2005).

33. E. V. Garcia Ramirez, M. L. Arroyo Carrasco, M. M. Mendez Otero,
E. Reynoso Lara, S. Chavez-Cerda, andM. D. Iturbe Castillo, J. Opt.
13, 085203 (2011).

34. A. Balbuena Ortega, M. L. Arroyo Carrasco, M. M. Méndez Otero,
E. Reynoso Lara, E. V. García Ramírez, and M. D. Iturbe Castillo,
Opt. Express 22, 27932 (2014).

35. S. Hughes, J. M. Burzler, G. Spruce, and B. S. Wherrett, J. Opt. Soc.
Am. B: Opt. Phys. 12, 1888 (1995).

36. B. Yao, L. Ren, and X. Hou, J. Opt. Soc. Am. B: Opt. Phys. 20, 1290
(2003).

37. L. Pálfalvi, B. C. Tóth, G. Almási, J. A. Fülöp, and J. Hebling, Appl.
Phys. B: Lasers Opt. 97, 679 (2009).

38. D. Namarathne, S. Walden, M. Shortell, and E. Jaatinen, Appl.
Phys. A: Mater. Sci. Process. 122, 319 (2016).

39. S. Basudeb, M. Cedrik, and Z. Thomas, Adv. Photon. 1, 024002 (2019).
40. R. Shimon and F. Yeshaiahu, Adv. Photon. 1, 066003 (2019).
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